Accesso libero

Nonparametric instrumental variables for identification of block-oriented systems

   | 30 set 2013
INFORMAZIONI SU QUESTO ARTICOLO

Cita

Bai, E. (1998). An optimal two-stage identification algorithm for Hammerstein-Wiener nonlinear systems, Automatica34(3): 333-338.10.1016/S0005-1098(97)00198-2Search in Google Scholar

Chen, S. and Billings, S. (1989). Representations of non-linear systems: The NARMAX model, International Journal ofControl 49(3): 1013-1032.10.1080/00207178908559683Search in Google Scholar

Chow, Y. and Teicher, H. (2003). Probability Theory: Independence,Interchangeability, Martingales, Springer-Verlag, New York, NY.Search in Google Scholar

Findeisen, W., Bailey, F., Brdyś, M., Malinowski, K., Tatjewski, P. and Woźniak, A. (1980). Control and Coordination inHierarchical Systems, J. Wiley, Chichester/New York, NY.Search in Google Scholar

Finigan, B. and Rowe, I. (1974). Strongly consistent parameter estimation by the introduction of strong instrumental variables, IEEE Transactions on Automatic Control19(6): 825-830.10.1109/TAC.1974.1100719Search in Google Scholar

Giri, F. and Bai, E.W. (2010). Block-Oriented Nonlinear SystemIdentification, Lecture Notes in Control and Information Sciences, Vol. 404, Springer, Berlin.Search in Google Scholar

Greblicki, W. and Pawlak, M. (2008). Nonparametric SystemIdentification, Cambridge University Press, New York, NY.10.1017/CBO9780511536687Search in Google Scholar

Haber, R. and Keviczky, L. (1999). Nonlinear System Identification:Input-Output Modeling Approach, Kluwer Academic Publishers, Dordrecht.10.1007/978-94-011-4481-0Search in Google Scholar

Hannan, E. and Deistler, M. (1988). The Statistical Theory ofLinear Systems, John Wiley and Sons, New York, NY.Search in Google Scholar

Hansen, L. and Singleton, K. (1982). Generalized instrumental variables estimation of nonlinear rational expectations models, Econometrica: Journal of the Econometric Society50(5): 1269-1286.10.2307/1911873Search in Google Scholar

Hasiewicz, Z. (1989). Applicability of least-squares to the parameter estimation of large-scale no-memory linear composite systems, International Journal of Systems Science20(12): 2427-2449.10.1080/00207728908910324Search in Google Scholar

Hasiewicz, Z. and Mzyk, G. (2009). Hammerstein system identification by non-parametric instrumental variables, InternationalJournal of Control 82(3): 440-455.10.1080/00207170802225930Search in Google Scholar

Hill, D. and Chong, C. (1989). Lyapunov functions of Lur’e-Postnikov form for structure preserving models of power systems, Automatica 25(3): 453-460.10.1016/0005-1098(89)90015-0Search in Google Scholar

Hill, D. and Mareels, I. (1990). Stability theory for differential/algebraic systems with application to power systems, IEEE Transactions on Circuits and Systems37(11): 1416-1423.10.1109/31.62415Search in Google Scholar

Kincaid, D. and Cheney, E. (2002). Numerical Analysis:Mathematics of Scientific Computing, Vol. 2, American Mathematical Society, Pacific Grove, CA.Search in Google Scholar

Kowalczuk, Z. and Kozłowski, J. (2000). Continuous-time approaches to identification of continuous-time systems, Automatica 36(8): 1229-1236.10.1016/S0005-1098(00)00033-9Search in Google Scholar

Kudrewicz, J. (1976). Functional Analysis for Control and ElectronicsEngineers, PWN, Warsaw, (in Polish).Search in Google Scholar

Lu, J. and Hill, D. (2007). Impulsive synchronization of chaotic Lur’e systems by linear static measurement feedback: An LMI approach, IEEE Transactions on Circuits and SystemsII: Express Briefs 54(8): 710-714.10.1109/TCSII.2007.898468Search in Google Scholar

Mzyk, G. (2007). Generalized kernel regression estimate for the identification of Hammerstein systems, InternationalJournal of Applied Mathematics and Computer Science17(2): 189-197, DOI: 10.2478/v10006-007-0018-z.10.2478/v10006-007-0018-zSearch in Google Scholar

Mzyk, G. (2009). Nonlinearity recovering in Hammerstein system from short measurement sequence, IEEE SignalProcessing Letters 16(9): 762-765.10.1109/LSP.2009.2024795Search in Google Scholar

Mzyk, G. (2013). Instrumental variables for nonlinearity recovering in block-oriented systems driven by correlated signal, International Journal of Systems Science, DOI: 10.1080/00207721.2013.775682.10.1080/00207721.2013.775682Search in Google Scholar

Rao, C. (1973). Linear Statistical Inference and Its Applications, Wiley, New York, NY.10.1002/9780470316436Search in Google Scholar

Sagara, S. and Zhao, Z.-Y. (1990). Numerical integration approach to on-line identification of continuous-time systems, Automatica 26(1): 63-74.10.1016/0005-1098(90)90158-ESearch in Google Scholar

Sastry, S. (1999). Nonlinear Systems: Analysis, Stability, andControl, Interdisciplinary Applied Mathematics, Vol. 10, Springer, New York, NY.Search in Google Scholar

Söderström, T. and Stoica, P. (1983). Instrumental VariableMethods for System Identification, Vol. 161, Springer-Verlag, Berlin.Search in Google Scholar

Söderström, T. and Stoica, P. (1989). System Identification, Prentice Hall, Englewood Cliffs, NJ.Search in Google Scholar

Söderström, T. and Stoica, P. (2002). Instrumental variable methods for system identification, Circuits, Systems, andSignal Processing 21(1): 1-9.10.1007/BF01211647Search in Google Scholar

Stoica, P. and Söderström, T. (1982). Instrumental-variable methods for identification of Hammerstein systems, InternationalJournal of Control 35(3): 459-476.10.1080/00207178208922632Search in Google Scholar

Suykens, J., Yang, T. and Chua, L. (1998). Impulsive synchronization of chaotic Lur’e systems by measurement feedback, International Journal of Bifurcation and Chaos8(06): 1371-1381.10.1142/S0218127498001078Search in Google Scholar

Ward, R. (1977). Notes on the instrumental variable method, IEEE Transactions on Automatic Control 22(3): 482-484.10.1109/TAC.1977.1101531Search in Google Scholar

Wong, K. and Polak, E. (1967). Identification of linear discrete time systems using the instrumental variable method, IEEETransactions on Automatic Control 12(6): 707-718.10.1109/TAC.1967.1098734Search in Google Scholar

Zhang, Y., Bai, E., Libra, R., Rowden, R. and Liu, H. (1996).Simulation of spring discharge from a limestone aquifer in Iowa, USA, Hydrogeology Journal 4(4): 41-54.10.1007/s100400050087Search in Google Scholar

Zhao, Z.-Y., Sagara, S. andWada, K. (1991). Bias-compensating least squares method for identification of continuous-time systems from sampled data, International Journal of Control53(2): 445-461. 10.1080/00207179108953627Search in Google Scholar

eISSN:
2083-8492
ISSN:
1641-876X
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Mathematics, Applied Mathematics