1. bookVolume 49 (2022): Edizione 3 (October 2022)
Dettagli della rivista
Prima pubblicazione
05 Nov 2014
Frequenza di pubblicazione
4 volte all'anno
Accesso libero

Pathophysiology and Management Possibilities of Thyroid-Associated Depression

Pubblicato online: 26 Oct 2022
Volume & Edizione: Volume 49 (2022) - Edizione 3 (October 2022)
Pagine: 68 - 72
Ricevuto: 03 Jun 2022
Accettato: 13 Aug 2022
Dettagli della rivista
Prima pubblicazione
05 Nov 2014
Frequenza di pubblicazione
4 volte all'anno

1. Prezioso G, Giannini C, Chiarelli F. Effect of Thyroid Hormones on Neurons and Neurodevelopment. Horm Res Paediatr. 2018;90(2):73-81.10.1159/000492129 Search in Google Scholar

2. Pearce EN, Farwell AP, Braverman LE. Thyroiditis. N Eng J Med. 2003;348(26):2646–2655.10.1056/NEJMra021194 Search in Google Scholar

3. Bernal J. Thyroid hormone receptors in brain development and function. Nat Clin Pract Endocrinol Metab. 2007;3(3):249-259.10.1038/ncpendmet0424 Search in Google Scholar

4. Bagamasbad PD, Espina JEC, Knoedler JR, et al. Coordinated transcriptional regulation by thyroid hormone and glucocorticoid interaction in adult mouse hippocampus-derived neuronal cells. PLoS One. 2019;14(7):e0220378.10.1371/journal.pone.0220378 Search in Google Scholar

5. Heinrich TW, Grahm G. Hypothyroidism Presenting as Psychosis: Myxedema Madness Revisited. Prim Care Companion J Clin Psychiatry. 2003 Dec;5(6):260-266.10.4088/PCC.v05n0603 Search in Google Scholar

6. Whybrow P, Prange A, Treadway C. Mental changes accompanying thyroid gland dysfunction: a reappraisal using objective psychological measurement. Arch Gen Psychiatry. 1969;20(1):48–63.10.1001/archpsyc.1969.01740130050004 Search in Google Scholar

7. Zhao T, Chen BM, Zhao XM, Shan ZY. Subclinical hypothyroidism and depression: a meta-analysis. Transl Psychiatry. 2018;8(1):239.10.1038/s41398-018-0283-7 Search in Google Scholar

8. Airaksinen J, Komulainen K, García-Velázquez R, et al. Subclinical hypothyroidism and symptoms of depression: Evidence from the National Health and Nutrition Examination Surveys (NHANES). Compr Psychiatry. 2021;109:152253.10.1016/j.comppsych.2021.152253 Search in Google Scholar

9. Malhi, GS, Mann, JJ. Depression. Lancet. 2018;392 (10161):2299-2312.10.1016/S0140-6736(18)31948-2 Search in Google Scholar

10. Anderson GW, Schoonover CM, Jones SA. Control of thyroid hormone action in the developing rat brain. Thyroid. 2003;13:1039-1056.10.1089/10507250377086721914651788 Search in Google Scholar

11. Santisteban P, Bernal J. Thyroid development and effect on the nervous system. Rev Endocr Metab Disord. 2005;6(3):217-28.10.1007/s11154-005-3053-916151626 Search in Google Scholar

12. De Jong FJ, den Heijer T, Visser TJ, et al. Thyroid hormones, dementia, and atrophy of the medial temporal lobe. J Clin Endocrinol Metab. 2006;91(7):2569-2573.10.1210/jc.2006-044916636121 Search in Google Scholar

13. Ambrogini P, Cuppini R, Ferri P, et al. Thyroid hormones affect neurogenesis in the dentate gyrus of adult rat. Neuroendocrinology. 2005;81(4):244-253.10.1159/00008764816113586 Search in Google Scholar

14. Lavado-Autric R, Ausó E, García-Velasco JV, et al. Early maternal hypothyroxinemia alters histogenesis and cerebral cortex cytoarchitecture of the progeny. J Clin Invest. 2003;111(7):1073-1082.10.1172/JCI200316262 Search in Google Scholar

15. Gilbert ME, Rovet J, Chen Z, Koibuchi N. Developmental thyroid hormone disruption: prevalence, environmental contaminants and neurodevelopmental consequences. Neurotoxicology. 2012;33(4):842-852.10.1016/j.neuro.2011.11.00522138353 Search in Google Scholar

16. Rovet JF. The role of thyroid hormones for brain development and cognitive function. Endocr Dev. 2014;26:26-43.10.1159/00036315325231442 Search in Google Scholar

17. Wassner AJ. Congenital Hypothyroidism. Clin Perinatol. 2018;45(1):1-18.10.1016/j.clp.2017.10.00429405999 Search in Google Scholar

18. Wheeler SM, Willoughby KA, McAndrews MP, Rovet JF. Hippocampal size and memory functioning in children and adolescents with congenital hypothyroidism. J Clin Endocrinol Metab. 2011;96(9):E1427-34.10.1210/jc.2011-011921697249 Search in Google Scholar

19. Cooke GE, Mullally S, Correia N, et al. Hippocampal volume is decreased in adults with hypothyroidism. Thyroid. 2014;24(3):433-440.10.1089/thy.2013.005824205791 Search in Google Scholar

20. Bauer M, Silverman DH, Schlagenhauf F, et al. Brain glucose metabolism in hypothyroidism: a positron emission tomography study before and after thyroid hormone replacement therapy. J Clin Endocrinol Metab. 2009;94(8):2922-2929.10.1210/jc.2008-223519435829 Search in Google Scholar

21. Tiller JW. Depression and anxiety. Med J Aust. 2013;199 (S6):S28-31.10.5694/mja12.1062825370281 Search in Google Scholar

22. Kamran M, Bibi F, Ur Rehman A, Morris DW. Major Depressive Disorder: Existing Hypotheses about Pathophysiological Mechanisms and New Genetic Findings. Genes (Basel). 2022;13(4):646.10.3390/genes13040646902546835456452 Search in Google Scholar

23. Bakalov D, Hadjiolova R, Pechlivanova, D. Pathophysiology of Depression and Novel Sources of Phytochemicals for its Treatment – A Systematic Review. Acta Medica Bulgarica. 2020; 47(4):69-74.10.2478/amb-2020-0049 Search in Google Scholar

24. Liu W, Ge T, Leng Y, et al. The Role of Neural Plasticity in Depression: From Hippocampus to Prefrontal Cortex. Neural Plast. 2017;2017:6871089.10.1155/2017/6871089529916328246558 Search in Google Scholar

25. Chan SW, Harmer CJ, Norbury R, et al. Hippocampal volume in vulnerability and resilience to depression. J Affect Disord. 2016;189:199-202.10.1016/j.jad.2015.09.02126451503 Search in Google Scholar

26. Cole J, Costafreda SG, McGuffin P, Fu CH. Hippocampal atrophy in first episode depression: a meta-analysis of magnetic resonance imaging studies. J Affect Disord. 2011;134(1-3):483-487.10.1016/j.jad.2011.05.05721745692 Search in Google Scholar

27. Baaré WF, Vinberg M, Knudsen GM, et al. Hippocampal volume changes in healthy subjects at risk of unipolar depression. J Psychiatr Res. 2010;44(10):655-662.10.1016/j.jpsychires.2009.12.00920096419 Search in Google Scholar

28. Kowiański P, Lietzau G, Czuba E, et al. BDNF: A Key Factor with Multipotent Impact on Brain Signaling and Synaptic Plasticity. Cell Mol Neurobiol. 2018;38(3):579-593.10.1007/s10571-017-0510-4583506128623429 Search in Google Scholar

29. Dwivedi Y. Brain-derived neurotrophic factor: role in depression and suicide. Neuropsychiatr Dis Treat. 2009;5:433-449.10.2147/NDT.S5700 Search in Google Scholar

30. Mondal AC, Fatima M. Direct and indirect evidences of BDNF and NGF as key modulators in depression: role of antidepressants treatment. Int J Neurosci. 2019;129(3):283-296.10.1080/00207454.2018.152732830235967 Search in Google Scholar

31. Biondi B, Cappola AR, Cooper DS. Subclinical Hypothyroidism: A Review. JAMA. 2019;322(2):153-160.10.1001/jama.2019.9052 Search in Google Scholar

32. Wilson SA, Stem LA, Bruehlman RD. Hypothyroidism: Diagnosis and Treatment. Am Fam Physician. 2021;103(10):605-613. Search in Google Scholar

33. Loh HH, Lim LL, Yee A, Loh HS. Association between subclinical hypothyroidism and depression: an updated systematic review and meta-analysis. BMC Psychiatry. 2019;19(1):12.10.1186/s12888-018-2006-2 Search in Google Scholar

34. Bode H, Ivens B, Bschor T, et al. Association of Hypothyroidism and Clinical Depression: A Systematic Review and Metaanalysis. JAMA Psychiatry. 2021;78(12):1375-1383.10.1001/jamapsychiatry.2021.2506 Search in Google Scholar

35. Aubert CE, Bauer DC, da Costa BR, et al. The association between subclinical thyroid dysfunction and dementia: The Health, Aging and Body Composition (Health ABC) Study. Clin Endocrinol (Oxf). 2017;87(5):617-626.10.1111/cen.13458 Search in Google Scholar

36. Nicola Marioara OM, Popescu M, Vlădoianu CN, et al. Study of Cognitive Disfunctions in Thyroid Pathology. Curr Health Sci J. 2021;47(2):256-262. Search in Google Scholar

37. Chaker L, Bianco AC, Jonklaas J, Peeters RP. Hypothyroidism. Lancet. 2017;390:1550-1562.10.1016/S0140-6736(17)30703-1 Search in Google Scholar

38. Pilhatsch M, Marxen M, Winter C, et al. Hypothyroidism and mood disorders: integrating novel insights from brain imaging techniques. Thyroid Res. 2011;4 Suppl 1(Suppl 1):S3.10.1186/1756-6614-4-S1-S3315510921835050 Search in Google Scholar

39. Hage MP, Azar ST. The Link between Thyroid Function and Depression. J Thyroid Res. 2012;2012:590648. Search in Google Scholar

40. Bocheva G, Landzhov B, Bozhilova-Pastirova A, et al. Effect of hypothyroidism on TSH-receptor expression in rats and its possible role in the pathogenesis of thyroid-associated dermatopathy. Comptes rendus de l´Academie bulgare des Science 2007;60 (7):805-808. Search in Google Scholar

41. Djurovic M, Pereira AM, Smit JWA, et al. Cognitive functioning and quality of life in patients with Hashimoto thyroiditis on long-term levothyroxine replacement. Endocrine. 2018;62(1):136-143.10.1007/s12020-018-1649-629959689 Search in Google Scholar

42. Saravanan P, Chau WF, Roberts N, et al. Psychological wellbeing in patients on ‘adequate‘ doses of l-thyroxine: results of a large, controlled community-based questionnaire study. Clin Endocrinol (Oxf). 2002;57(5):577-585.10.1046/j.1365-2265.2002.01654.x12390330 Search in Google Scholar

43. Kotkowska Z, Strzelecki D. Depression and Autoimmune Hypothyroidism-Their Relationship and the Effects of Treating Psychiatric and Thyroid Disorders on Changes in Clinical and Biochemical Parameters Including BDNF and Other Cytokines-A Systematic Review. Pharmaceuticals (Basel). 2022;15(4):391.10.3390/ph15040391902508635455388 Search in Google Scholar

44. Björkholm C, Monteggia LM. BDNF – a key transducer of antidepressant effects. Neuropharmacology. 2016;102:72-79.10.1016/j.neuropharm.2015.10.034476398326519901 Search in Google Scholar

45. Huang TL, Lee CT, Liu YL. Serum Brain-Derived Neurotrophic Factor Levels in Patients with Major Depression: Effects of Antidepressants. J Psychiatr Res. 2008;42:521-525.10.1016/j.jpsychires.2007.05.007 Search in Google Scholar

46. Vaidya VA, Terwilliger RZ, Duman RS, et al. Role of 5-HT2A receptors in the stress-induced down-regulation of brain-derived neurotrophic factor expression in rat hippocampus. Neurosci Lett. 1999;262:1-4.10.1016/S0304-3940(99)00006-3 Search in Google Scholar

47. Shafiee SM, Vafaei AA, Rashidy-Pour A. Effects of maternal hypothyroidism during pregnancy on learning, memory and hippocampal BDNF in rat pups: Beneficial effects of exercise. Neuroscience. 2016;329:151-161.10.1016/j.neuroscience.2016.04.04827181637 Search in Google Scholar

48. Chakraborty G, Magagna-Poveda A, Parratt C, et al. Reduced hippocampal brain-derived neurotrophic factor (BDNF) in neonatal rats after prenatal exposure to propylthiouracil (PTU). Endocrinology. 2012;153:1311-1316.10.1210/en.2011-1437338407722253429 Search in Google Scholar

49. Monteggia LM, Barrot M, Powell CM, et al. Essential role of brain-derived neurotrophic factor in adult hippocampal function. Proc Natl Acad Sci U S A. 2004;101(29):10827-10832.10.1073/pnas.040214110149001915249684 Search in Google Scholar

50. Lasley SM, Gilbert ME. Developmental thyroid hormone insufficiency reduces expression of brain-derived neurotrophic factor (BDNF) in adults but not in neonates. Neurotoxicol Teratol. 2011;33:464-472.10.1016/j.ntt.2011.04.00121530650 Search in Google Scholar

51. Shulga A, Blaesse A, Kysenius K, et al. Thyroxin regulates BDNF expression to promote survival of injured neurons. Mol Cell Neurosci. 2009;42(4):408-418.10.1016/j.mcn.2009.09.00219765661 Search in Google Scholar

Articoli consigliati da Trend MD

Pianifica la tua conferenza remota con Sciendo