Accesso libero

Possible Hypothetical Mode of Action of ECT (Electroconvulsive Therapy) Based on DNA Dipole Character and Epigenetics

   | 20 nov 2021
INFORMAZIONI SU QUESTO ARTICOLO

Cita

1. Grager B, Di Pauli J. Indikationen und Wirksamkeit der EKT. In: M. Grözinger et al. (Ed.). Elektrokonvulsionstherapie kompakt. Springer Verlag, Heidelberg, 2013, 73-79. Search in Google Scholar

2. Janoushek H, Nickl-Jockschat Th. Wirkmechanismen der EKT. In: M. Grözinger et al. (Ed.). Elektrokonvulsionstherapie kompakt. Springer Verlag, Heidelberg, 2013, pp. 181-196. Search in Google Scholar

3. Kellner C. Technique for performing electroconvulsive therapy (ECT) in adults. Available online: https://www.uptodate.com/contents/technique-for-performing-electroconvulsive-therapy-ect-in-adults. (Accessed on 04 June 2020) Search in Google Scholar

4. Grover S, Sahoo, S, Rabha A, Koirala R. ECT in schizophrenia: a review of evidence. Acta Neuropsychiatr., 2019, 31, 115-127. Search in Google Scholar

5. Chawla N: Anaesthesia for Electroconvulsive Therapy. Anaesthesiol. Clin., 2020, 38, 183-195. Search in Google Scholar

6. Baldinger P, Lotan A, Frey R et al. Neurotransmitters and electroconvulsive therapy. J ECT, 2014, 30, 116-121. Search in Google Scholar

7. Eschweiler GW: Modelle zum Wirkmechanismus der Elektrokrampftherapie. In: G.W. Eschweiler et al. (Ed.): Elektromagnetische Therapien in der Psychiatrie. Steinkopf Verlag, Darmstadt, 2003, 90-106. Search in Google Scholar

8. Li M, Yao X, Sun L et al. Effects of Electroconvulsive Therapy on depression and its potential mechanism. Frontiers in Psychology, 2020, 11, Article 80. Search in Google Scholar

9. Jiang J, Wang J, Chumbo L. Potential mechanisms underlying the therapeutic effects of electroconvulsive therapy. Neurosci. Bull., 2017, 33, 339-347. Search in Google Scholar

10. Kolshus E, Ryan KM, Blackshields G et al. Peripheral blood microRNA and VEGFA mRNA changes following electrocon-vulsive therapy: Implications for psychotic depression. Acta Psychiatr. Scand., 2017, 36, 594-606. Search in Google Scholar

11. Kleimann A, Kotsiari A, Sperling W et al. BDNF serum levels and promotor methylation of BDNF exon I, IV and VI in depressed patients receiving electroconvulsive therapy. J. Neural. Transm. (Vienna), 2015, 122, 925-928. Search in Google Scholar

12. Bork S. Praktische Durchführung der Elektrokrampftherapie. In: G.W. Eschweiler et al. (Ed.): Elektromagnetische Therapien in der Psychiatrie. Steinkopf Verlag, Darmstadt, 2003, 63-72. Search in Google Scholar

13. Pray L. Eurkaryotic genome complexity. Nature Education, 2008, 1, 96. Search in Google Scholar

14. Golbabapour S, Abdulla MA, Hajrezaei M. A concise review on epigenetic regulation: Insight into molecular mechanisms. Int. J. Mol. Sci., 2011, 12, 8661-8694. Search in Google Scholar

15. Kegel B. Das interaktive Buch des Lebens. Spektrum der Wissenschaft – Highlights, 2016, 12-21. Search in Google Scholar

16. Fischer A. Die Epigenetik neurodegenerativer Erkrankungen. Spektrum der Wissenschaft – Highlights, 2016, 41-50. Search in Google Scholar

17. Stimpfel M, Jancar N, Virant-Klun I. New Challenge: Mitochondrial epigenetics. Stem Cell Rev. Report 2018, 14 (1), 13-26. Search in Google Scholar

18. Yan W, Ma L, Burns K, Matzuk M. HIS1 is a spermatid-specific linker histone H1-like protein implicated in chromatin remodeling during mammalian spermiogenesis. PNAS, 2003, 100 (18),10546-105516. Search in Google Scholar

19. Lee JY, Lee TH. Effect of histone acetylation and CpG methylation on the structure of nucleosomes. Biochim. Biophys. Acta, 2012, 1824 (8), 974-982. Search in Google Scholar

20. Tycko B, Ashkenas J. Epigenetics and its role in disease. J. Clin. Invest., 2000, 105: 245-246. Search in Google Scholar

21. Koch HJ: Possible interaction between epigenetics, genetics and quantum mechanics. Neuroquantology, 2019, 17, 41-44. Search in Google Scholar

22. Tschesche H. Der chemische Bau biologisch wichtiger Makromoleküle. In: Hoppe W et al. (Ed.): Biophysik. Springer Verlag, Heidelberg, 1982, 22-32. Search in Google Scholar

23. Meschede D. Gerthsen Physik. 24th ed. Springer, Heidelberg, 2010, 704-713. Search in Google Scholar

24. Davidovits P. Physics in Biology and Medicine. 3th edition. Academic Press-Elsevier, Amsterdam, 2012, 180-213. Search in Google Scholar

25. Wedenich D: Physikalische Phänomene in der Biologie – Elektrizität in Nervenzellen. Available at: http://www.physikdidaktik.info/data/_uploaded/Delta_Phi_B/2016/Werdenich(2016)Biologie_DeltaPhiB.pdf. (Accessed on 20 March 2020) Search in Google Scholar

26. Glaser R. Einführung in die Biophysik. Gustav Fischer Verlag, Stuttgart, 1976, 28-128. Search in Google Scholar

27. Sackmann E, Merket R. Lehrbuch der Biophysik. 2. Auflage. Wiley VCH, Weinheim, 2010, 415-470. Search in Google Scholar

28. Fried SD, Boxer SG. Electric fields and enzyme catalysis. Ann. Rev. Biochem., 2017, 86, 387-415. Search in Google Scholar

29. Smith SS, Kaplan BE, Sowers LC, Newman EM: Mechanism of human DNA methyltransferase and the fidelity of cytosine methylation. Proc Natl Acad Sci USA 1992; 89: 4744-4748. Search in Google Scholar

eISSN:
2719-5384
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Medicine, Basic Medical Science, Immunology, Clinical Medicine, other