Accesso libero

Changes in the Expression of DNA Methylation Related Genes in Leukocytes of Persons with Alcohol and Drug Dependence

INFORMAZIONI SU QUESTO ARTICOLO

Cita

1. Nielsen D, Utrankar A, Reyes J et al. Epigenetics of drug abuse: Predisposition or response. Pharmacogenomics, 2012, 13, 1149-1160.10.2217/pgs.12.94 Search in Google Scholar

2. Bird A. Perceptions of epigenetics. Nature, 2007, 447(7143), 396-398.10.1038/nature05913 Search in Google Scholar

3. Klose RJ, Bird AP. Genomic DNA methylation: the mark and its mediators. Trends Biochem Sci, 2006, 31(2), 89-97.10.1016/j.tibs.2005.12.008 Search in Google Scholar

4. Lyko F. The DNA methyltransferase family: a versatile toolkit for epigenetic regulation. Nat Rev Genet, 2018, 19(2), 81-92.10.1038/nrg.2017.80 Search in Google Scholar

5. Du Q, Luu PL, Stirzaker C, Clark SJ. Methyl-CpG-binding domain proteins: readers of the epigenome. Epigenomics, 2015, 7(6), 1051-1073.10.2217/epi.15.39 Search in Google Scholar

6. Houston I, Peter CJ, Mitchell A et al. Epigenetics in the human brain. Neuropsychopharm, 2013, 38, 183-197.10.1038/npp.2012.78 Search in Google Scholar

7. Grayson DR, Guidotti A. The dynamics of DNA methylation in schizophrenia and related psychiatricdisorders. Neuropsychopharm, 2013, 38, 138-166.10.1038/npp.2012.125 Search in Google Scholar

8. Guidotti A, Auta J, Chen Y et al. Epigenetic GABAergic targets in schizophrenia and bipolar disorder. Neuropharm, 2011, 60, 1007-1016.10.1016/j.neuropharm.2010.10.021 Search in Google Scholar

9. Mill J, Tang T, Kaminsky Z et al. Epigenomic profiling reveals DNA-methylation changes associated with major psychosis. Am J Hum Genet, 2008, 82, 696-711.10.1016/j.ajhg.2008.01.008 Search in Google Scholar

10. Lister R, Mukamel EA. Turning over DNA methylation in the mind. Front Neurosci, 2015, 9, 252.10.3389/fnins.2015.00252 Search in Google Scholar

11. Garro AJ, McBeth DL, Lima V, Lieber CS. Ethanol consumption inhibits fetal DNA methylation in mice: implications for the Fetal Alcohol Syndrome. Alcohol Clin Exp Res, 1991, 15, 395-398.10.1111/j.1530-0277.1991.tb00536.x Search in Google Scholar

12. Ponomarev I, Wang S, Zhang L et al. Gene coexpression networks in human brain identify epigenetic modifications in alcohol dependence. J Neurosci, 2012, 32, 1884-1897.10.1523/JNEUROSCI.3136-11.2012 Search in Google Scholar

13. Shukla SD, Velazquez J, French SW et al Emerging role of epigenetics in the actions of alcohol. Alcoholism: Clin Exp Res, 2008, 32(9), 1525-1534.10.1111/j.1530-0277.2008.00729.x Search in Google Scholar

14. Bonsch D, Lenz B, Reulbach U et al. Homocysteine associated genomic DNA hypermethylation in patients with chronic alcoholism. J Neural Transm, 2004, 111, 1611-1616.10.1007/s00702-004-0232-x Search in Google Scholar

15. Manzardo AM, Henkhaus RS, Butler MG. Global DNA promoter methylation in frontal cortex of alcoholics and controls. Gene, 2012, 498(1), 5-12.10.1016/j.gene.2012.01.096 Search in Google Scholar

16. Auta J, Smith RC, Donga E et al. DNA-methylation gene network dysregulation in peripheral blood lymphocytes of schizophrenia patients. Schizophrenia Res, 2013, 150, 312-318.10.1016/j.schres.2013.07.030 Search in Google Scholar

17. Kala R, Shah HN, Martin SL, Tollefsbol TO. Epigenetic-based combinatorial resveratrol and pterostilbene alters DNA damage response by affecting SIRT1 and DNMT enzyme expression, including SIRT1-dependent γ-H2AX and telomerase regulation in triple-negative breast cancer. BMC Cancer, 2015, 15, 672.10.1186/s12885-015-1693-z Search in Google Scholar

18. Müller C, Readhead C, Diederichs et al. Methylation of the cyclin A1 promoter correlates with gene silencing in somatic cell lines, while tissue-specific expression of cyclin A1 is methylation independent. Mol Cell Biol, 2000, 3316-3329.10.1128/MCB.20.9.3316-3329.2000 Search in Google Scholar

19. Pfaffl MW. A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res, 2001, 29(9), e45.10.1093/nar/29.9.e45 Search in Google Scholar

20. Moore LD, Le T, Fan G. DNA methylation and its basic function. Neuropsychopharmacology Reviews, 2013, 38, 23-38.10.1038/npp.2012.112 Search in Google Scholar

21. Baubec T, Ivánek R, Lienert F, Schübeler D. Methylation-dependent and – independent genomic targeting principles of the MBD protein family. Cell, 2013, 53(2), 480-492.10.1016/j.cell.2013.03.011 Search in Google Scholar

22. Vertino PM, Yen RW, Gao J, Baylin SB. De novo methylation of CpG island sequences in human fibroblasts overexpressing DNA (cytosine-5-)-methyltransferase. Mol Cell Biol, 1996; 16(8), 4555-4565.10.1128/MCB.16.8.4555 Search in Google Scholar

23. Bielawski DM, Zaher FM, Svinarich DM, Abel EL. Paternal alcohol exposure affects sperm cytosine methyltransferase messenger RNA levels. Alcohol Clin Exp Res, 2002, 26, 347-351.10.1111/j.1530-0277.2002.tb02544.x Search in Google Scholar

24. Warnault ED, Levine A, Barak S, Ron D. Chromatin remodeling - a novel strategy to control excessive alcohol drinking. Transl Psychiatry, 2013, 3, e231.10.1038/tp.2013.4 Search in Google Scholar

25. Jones PA, Liang G. Rethinking how DNA methylation patterns are maintained. Nat Rev Genet, 2009, 10, 805-811.10.1038/nrg2651 Search in Google Scholar

26. Miozzo F, Arnould H, De Thonel A et al. Alcohol exposure promotes DNA methyltransferase DNMT3a upregulation through reactive oxygen species-dependent mechanisms. Cell Stress Chaperones, 2018, 23, 115–126.10.1007/s12192-017-0829-2 Search in Google Scholar

27. Bönsch D, Lenz B, Fiszer R et al. Lowered DNA methyltransferase (DNMT-3b) mRNA expression is associated with genomic DNA hypermethylation in patients with chronic alcoholism. J Neural Transm, 2006, 113(9), 1299-1304.10.1007/s00702-005-0413-2 Search in Google Scholar

28. Zhang X, Kusumo H, Sakharkar AJ et al. Regulation of DNA methylation by ethanol induces tissue plasminogen activator expression in astrocytes. J Neurochem, 2014, 128(3), 344-349.10.1111/jnc.12465 Search in Google Scholar

29. LaPlant Q, Vialou V, Covington HE 3rd, et al. DNMT3a regulates emotional behavior and spine plasticity in the nucleus accumbens. Nat Neurosci, 2010, 13(9), 1137-1143.10.1038/nn.2619 Search in Google Scholar

30. Im HI, Hollander JA, Bali P, Kenny PJ. MeCP2 controls BDNF expression and cocaine intake through homeostatic interactions with microRNA-212. Nat Neurosci, 2010, 13(9), 1120-1127.10.1038/nn.2615 Search in Google Scholar

31. Cotto B, Li H, Tuma RF, Ward SJ, Langford D. Cocaine-mediated activation of microglia and microglial MeCP2 and BDNF production. Neurobiol Dis, 2018, 117, 28-41.10.1016/j.nbd.2018.05.017 Search in Google Scholar

32. Deng JV, Rodriguiz RM, Hutchinson AN et al. MeCP2 in the nucleus accumbens contributes to neural and behavioral responses to psychostimulants. Nat Neurosci, 2010, 13(9), 1128-1136.10.1038/nn.2614 Search in Google Scholar

33. Allan AM, Liang X, Luo Y, et al. The loss of methyl-CpG binding protein 1 leads to autism-like behavioral deficits. Hum Mol Genet, 2008, 17(13), 2047-2057.10.1093/hmg/ddn102 Search in Google Scholar

34. Li H, Yamagata T, Mori M, Yasuhara A, Momoi MY. Mutation analysis of methyl-CpG binding protein family genes in autistic patients. Brain Dev, 2005, 27(5), 321-325.10.1016/j.braindev.2004.08.003 Search in Google Scholar

35. Cassel S, Carouge D, Gensburger C, et al. Fluoxetine and cocaine induce the epigenetic factors MeCP2 and MBD1 in adult rat brain. Mol Pharmacol, 2006, 70(2), 487-492.10.1124/mol.106.022301 Search in Google Scholar

36. Pan H, Bilinovich SM, Kaur P et al. CpG and methylation-dependent DNA binding and dynamics of the methylcytosine binding domain 2 protein at the single-molecule level. Nucleic Acids Res, 2017, 45, 9164–9177.10.1093/nar/gkx548 Search in Google Scholar

37. Zhou Z, Yuan Q, Mash DC, Goldman D. Substance-specific and shared transcription and epigenetic changes in the human hippocampus chronically exposed to cocaine and alcohol. Proc Natl Acad Sci U S A, 2011, 108, 6626–6631.10.1073/pnas.1018514108 Search in Google Scholar

38. Liu J, Lewohl JM, Harris RA et al. Patterns of gene expression in the frontal cortex discriminate alcoholic from nonalcoholic individuals. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology, 2006, 31(7), 1574-1582.10.1038/sj.npp.1300947 Search in Google Scholar

39. Laget S, Miotto B, Chin HG et al. MBD4 cooperates with DNMT1 to mediate methyl-DNA repression and protects mammalian cells from oxidative stress. Epigenetics, 2014, 9(4), 546-556.10.4161/epi.27695 Search in Google Scholar

40. Wang S, Li Y, Zhu F et al. DNMT1 cooperates with MBD4 to inhibit the expression of Glucocorticoid-induced TNFR-related protein in human T cells. FEBS Lett, 2017, 591(13), 1929-1939.10.1002/1873-3468.12690 Search in Google Scholar

41. Guidotti A., Dong E., Gavin D et al. DNA Methylation/Demethylation Network Expression in Psychotic Patients with a History of Alcohol Abuse. Alcoholism, clinical and experimental research, 2012, 37.10.1111/j.1530-0277.2012.01947.x Search in Google Scholar

42. Knothe C, Doehring A, Ultsch A, Lötsch J. Methadone induces hypermethylation of human DNA. Epigenomics, 2016, 8(2), 167-179.10.2217/epi.15.78 Search in Google Scholar

eISSN:
2719-5384
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Medicine, Basic Medical Science, Immunology, Clinical Medicine, other