This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
ICT Fibers. Available online: https://ictfibers.com/(accessed on 202411-05).ICT Fibers. Available online: https://ictfibers.com/ (accessed on 2024-11-05).Search in Google Scholar
Spychala MJ, Latko-Durałek P, Miedzińska D, Sałasińska K, Cetnar I, Popławski A, Boczkowska A. Structural and mechanical properties of recycled HDPE with milled GFRP as a filler. Materials. 2022; 15: 5302. https://doi.org/10.3390/ma15155302SpychalaMJLatko-DurałekPMiedzińskaDSałasińskaKCetnarIPopławskiABoczkowskaA.Structural and mechanical properties of recycled HDPE with milled GFRP as a filler. Materials. 2022; 15: 5302. https://doi.org/10.3390/ma15155302Search in Google Scholar
Spychała MJ, Miedzińska D. Potencjalne kierunki wdrożenia nowego materiału kompozytowego z recyklatów HDPE i LPS. Projektowanie, Budowa i Eksploatacja Maszyn – cz. III. 2024.SpychałaMJMiedzińskaD.Potencjalne kierunki wdrożenia nowego materiału kompozytowego z recyklatów HDPE i LPS. Projektowanie, Budowa i Eksploatacja Maszyn – cz. III. 2024.Search in Google Scholar
Rahayu Y, Wahyu S. Physical Behaviour of Wood Plastic Composite Made of Recycled High-Density Polyethylene (HDPE). Jurnal Kehutanan Papuasia. 2023;9: 229–237. https://doi.org/10.46703RahayuYWahyuS.Physical Behaviour of Wood Plastic Composite Made of Recycled High-Density Polyethylene (HDPE). Jurnal Kehutanan Papuasia. 2023;9: 229–237. https://doi.org/10.46703Search in Google Scholar
Dorra H, Khlif M, Tounsi F, Bradai C. Effect of Maleic Anhydride–Grafted Polypropylene Coupling Agent on Mechanical Properties of HDPE Composites Filled with Grape Leaves Fiber. Biomass Conversion and Biorefinery. 2024;14(14):15251–1563. https://doi.org/10.1007/s13399-023-03963-xDorraHKhlifMTounsiFBradaiC.Effect of Maleic Anhydride-Grafted Polypropylene Coupling Agent on Mechanical Properties of HDPE Composites Filled with Grape Leaves Fiber. Biomass Conversion and Biorefinery. 2024;14(14):15251–1563. https://doi.org/10.1007/s13399-023-03963-xSearch in Google Scholar
Long Y, Shanks RA. The use of additives in the processing of biodegradable polyesters. Journal of Applied Polymer Science. 1996;61:1877.LongYShanksRA.The use of additives in the processing of biodegradable polyesters. Journal of Applied Polymer Science. 1996;61:1877.Search in Google Scholar
Misra RKD, Nerikar P, Bertrand K, Murphy D. Nanocrystalline filler induced changes in electrical and stability properties of a polymer nanocomposite electrolyte based on amorphous matrix. Journal of Materials Science. 2004;384:284.MisraRKDNerikarPBertrandKMurphyD.Nanocrystalline filler induced changes in electrical and stability properties of a polymer nanocomposite electrolyte based on amorphous matrix. Journal of Materials Science. 2004;384:284.Search in Google Scholar
Li Q, Matuana LM. Effectiveness of maleated and acrylic acid-functionalized polyolefin coupling agents for HDPE-wood-flour composites. Journal of Thermoplastic Composite Materials. 2003;16(6): 551–564. https://doi.org/10.1177/089270503033340LiQMatuanaLM.Effectiveness of maleated and acrylic acid-functionalized polyolefin coupling agents for HDPE-wood-flour composites. Journal of Thermoplastic Composite Materials. 2003;16(6): 551–564. https://doi.org/10.1177/089270503033340Search in Google Scholar
Abad MJ, Ares A, Barral-Losada LF, Ramirez CR. Effects of a mixture of stabilizers on the structure and mechanical properties of polyethylene during reprocessing. Journal of Applied Polymers Science. 2004;92(6). https://doi.org/10.1002/app.20420AbadMJAresABarral-LosadaLFRamirezCR.Effects of a mixture of stabilizers on the structure and mechanical properties of polyethylene during reprocessing. Journal of Applied Polymers Science. 2004;92(6). https://doi.org/10.1002/app.20420Search in Google Scholar
Delli E, Gkiliopoulos D, Vouvoudi E, Bikiaris D, Chrissafis K. Defining the Effect of a Polymeric Compatibilizer on the Properties of Random Polypropylene/Glass Fibre Composites. Journal of Composites Science. 2024 ; 8:44. https://doi.org/10.3390/jcs8020044DelliEGkiliopoulosDVouvoudiEBikiarisDChrissafisK.Defining the Effect of a Polymeric Compatibilizer on the Properties of Random Polypropylene/Glass Fibre Composites. Journal of Composites Science. 2024 ; 8:44. https://doi.org/10.3390/jcs8020044Search in Google Scholar
Wu Y, Song Y, Wu D, Mao X, Yang X, Jiang S, Zhang C, Guo R. Recent Progress in Modifications, Properties, and Practical Applications of Glass Fiber. Molecules. 2023;28:2466. https://doi.org/10.3390/molecules28062466WuYSongYWuDMaoXYangXJiangSZhangCGuoR.Recent Progress in Modifications, Properties, and Practical Applications of Glass Fiber. Molecules. 2023;28:2466. https://doi.org/10.3390/molecules28062466Search in Google Scholar
Vachon J, Assad-Alkhateb D, de Araujo Hsia L, Lora JH, Baumberger S. Effect of compatibilizers on polyethylene-eucalyptus lignin blends. Journal of Applied Polymers Science. 2023;140:e53695. https://doi.org/10.1002/app.53695VachonJAssad-AlkhatebDde Araujo HsiaLLoraJHBaumbergerS.Effect of compatibilizers on polyethylene-eucalyptus lignin blends. Journal of Applied Polymers Science. 2023;140:e53695. https://doi.org/10.1002/app.53695Search in Google Scholar
Ghosh A. Performance modifying techniques for recycled thermoplastics. Resources, Conservation and Recycling. 2021;175. https://doi.org/10.1016/j.resconrec.2021.105887GhoshA.Performance modifying techniques for recycled thermoplastics. Resources, Conservation and Recycling. 2021;175. https://doi.org/10.1016/j.resconrec.2021.105887Search in Google Scholar
Tselios C, Bikiaris D, Savidis P, Panayiotou C, Larena AJ. Glass-fiber reinforcement of in situ compatibilized polypropylene/polyethylene blends. Journal of Material Science. 1999;34:385–394. https://doi.org/10.1023/A:1004434412273TseliosCBikiarisDSavidisPPanayiotouCLarenaAJ.Glass-fiber reinforcement of in situ compatibilized polypropylene/polyethylene blends. Journal of Material Science. 1999;34:385–394. https://doi.org/10.1023/A:1004434412273Search in Google Scholar
Noranizan IA, Ahmad I. Effect of fiber loading and compatibilizer on rheological, mechanical, and morphological behaviors. Open Journal of Polymer Chemistry. 2012;2(2). https://doi.org/10.4236/ojp-chem.2012.22005NoranizanIAAhmadI.Effect of fiber loading and compatibilizer on rheological, mechanical, and morphological behaviors. Open Journal of Polymer Chemistry. 2012;2(2). https://doi.org/10.4236/ojp-chem.2012.22005Search in Google Scholar
Zheng A, Wang H, Zhu X, Masuda S. Studies on the interface of glass fiber-reinforced polypropylene composite. Composite Interfaces. 2002;9:319–333. https://doi.org/10.1163/156855402760194683ZhengAWangHZhuXMasudaS.Studies on the interface of glass fiber-reinforced polypropylene composite. Composite Interfaces. 2002;9:319–333. https://doi.org/10.1163/156855402760194683Search in Google Scholar
Watanabe R, Sugahara A, Hagihara H, Mizukado J, Shinzawa H. Insight into interfacial compatibilization of glass-fiber-reinforced polypropylene (PP) using maleic-anhydride modified PP employing infrared spectroscopic imaging. Composites Science and Technology. 2020;199. https://doi.org/10.1016/j.compcitech.2020.108379WatanabeRSugaharaAHagiharaHMizukadoJShinzawaH.Insight into interfacial compatibilization of glass-fiber-reinforced polypropylene (PP) using maleic-anhydride modified PP employing infrared spectroscopic imaging. Composites Science and Technology. 2020;199. https://doi.org/10.1016/j.compcitech.2020.108379Search in Google Scholar
Wündrich K. A review of radiation resistance for plastic and elastomeric materials. Physics, Materials Science. 1985;24:503–510.WündrichK.A review of radiation resistance for plastic and elastomeric materials. Physics, Materials Science. 1985;24:503–510.Search in Google Scholar
Kokta BV, Raj RG, Daneault C. Use of wood flour as filler in polypropylene: studies on mechanical properties. Polymer Plastic Technology and Engineering. 1989;28(3).KoktaBVRajRGDaneaultC.Use of wood flour as filler in polypropylene: studies on mechanical properties. Polymer Plastic Technology and Engineering. 1989;28(3).Search in Google Scholar
Raj RG, Kokta BV, Maldas D, Daneault C. Use of wood fibers in thermoplastics. VII. The effect of coupling agents in polyethylene-wood fiber composites. Journal of Applied Polymer Science 1989;37(4).RajRGKoktaBVMaldasDDaneaultC.Use of wood fibers in thermoplastics. VII. The effect of coupling agents in polyethylene-wood fiber composites. Journal of Applied Polymer Science1989;37(4).Search in Google Scholar
Kuan HC, Huang JM, Ma CCM, Wang FY. Processability, morphology, and mechanical properties of wood-reinforced high-density polyethylene composites. Plastics Rubber and Composites. 2003;32.KuanHCHuangJMMaCCMWangFY.Processability, morphology, and mechanical properties of wood-reinforced high-density polyethylene composites. Plastics Rubber and Composites. 2003;32.Search in Google Scholar
Bengtsson M, Gatenholm P, Oksman K. The effect of crosslinking on the properties of polyethylene/wood flour composites. Compos Science Technology 2005;65(10):1468–79.BengtssonMGatenholmPOksmanK.The effect of crosslinking on the properties of polyethylene/wood flour composites. Compos Science Technology2005;65(10):1468–79.Search in Google Scholar
Liu NC, Yao GP, Huang H. Influences of grafting formulations and processing conditions on properties of silane grafted moisture crosslinked polypropylenes. Polymers. 2000;41.LiuNCYaoGPHuangH.Influences of grafting formulations and processing conditions on properties of silane grafted moisture crosslinked polypropylenes. Polymers. 2000;41.Search in Google Scholar
Singh A. Irradiation of polyethylene: Some aspects of crosslinking and oxidative degradation. Radiation Physics and Chemistry. 1999;56:375–380.SinghA.Irradiation of polyethylene: Some aspects of crosslinking and oxidative degradation. Radiation Physics and Chemistry. 1999;56:375–380.Search in Google Scholar
Polymer-Additives. https://polymer-additives.specialchem.com/product/a-basf-irgacycle-ps-032-gPolymer-Additives. https://polymer-additives.specialchem.com/product/a-basf-irgacycle-ps-032-gSearch in Google Scholar
Mengeloglu F, Karakus K. Thermal degradation, mechanical properties, and morphology of wheat straw flour-filled recycled thermoplastic composites. Sensors. 2008;8:500–519. https://doi.org/10.3390/s8010500MengelogluFKarakusK.Thermal degradation, mechanical properties, and morphology of wheat straw flour-filled recycled thermoplastic composites. Sensors. 2008;8:500–519. https://doi.org/10.3390/s8010500Search in Google Scholar
Polymer-Additives. https://polymer-additives.specialchem.com/product/a-silma-silmalink-pro-453Polymer-Additives. https://polymer-additives.specialchem.com/product/a-silma-silmalink-pro-453Search in Google Scholar
PN-EN ISO 527-2. Plastics. Determination of Tensile Properties. Part 2: Test Conditions for Moulding and Extrusion Plastics. Polski Komitet Normalizacyjny: Warsaw. Poland; 2012.PN-EN ISO 527-2. Plastics. Determination of Tensile Properties. Part 2: Test Conditions for Moulding and Extrusion Plastics. Polski Komitet Normalizacyjny: Warsaw. Poland; 2012.Search in Google Scholar
ASTM D638-14; Standard Test Method for Tensile Properties of Plastics. ASM International: Novelty OH USA; 2014.ASTM D638-14; Standard Test Method for Tensile Properties of Plastics. ASM International: Novelty OH USA; 2014.Search in Google Scholar
Wojnar L, Kurzydłowski KJ, Szala J. Praktyka Analizy Obrazu. Polskie Towarzystwo Stereologiczne; 2002.WojnarLKurzydłowskiKJSzalaJ.Praktyka Analizy Obrazu. Polskie Towarzystwo Stereologiczne; 2002.Search in Google Scholar
Ross CK, Klassen NV, Shortt KR, Smith GD. A Direct Comparison of Water Calorimetry and Fricke Dosimetry. Physics in Medicine & Biology. 1989;34. https://doi.org/10.1088/0031-9155/34/1/003RossCKKlassenNVShorttKRSmithGD.A Direct Comparison of Water Calorimetry and Fricke Dosimetry. Physics in Medicine & Biology. 1989;34. https://doi.org/10.1088/0031-9155/34/1/003Search in Google Scholar
Klassen NV, Shortt KR, Seuntjens J, Ross CK. Fricke dosimetry: The difference between G(Fe3+) for Co-60 gamma-rays and high-energy x-rays. Physics in Medicine & Biology. 1999;44:1609–1624. https://doi.org/10.1088/0031-9155/44/7/303KlassenNVShorttKRSeuntjensJRossCK.Fricke dosimetry: The difference between G(Fe3+) for Co-60 gamma-rays and high-energy x-rays. Physics in Medicine & Biology. 1999;44:1609–1624. https://doi.org/10.1088/0031-9155/44/7/303Search in Google Scholar
Cota SS, Vasconcelos V, Senne Jr M, Carvalho LL, Rezende DB, Côrrea RF. Changes in mechanical properties due to gamma irradiation of high-density polyethylene (HDPE). Brazilian Journal of Chemical Engineering. 2007;24:259–265. https://doi.org/10.1590/S0104-66322007000200010CotaSSVasconcelosVSenne JrMCarvalhoLLRezendeDBCôrreaRF.Changes in mechanical properties due to gamma irradiation of high-density polyethylene (HDPE). Brazilian Journal of Chemical Engineering. 2007;24:259–265. https://doi.org/10.1590/S0104-66322007000200010Search in Google Scholar
Hejna A, Barczewski M., Kosmela P., Ani´sko J., Mysiukiewicz, O., Mar´c M. Mandarin peel as an auspicious functional filler for polymer composites. Macedonian Journal of Chemistry and Chemical Engineering. 2021;40: 89-106.HejnaABarczewskiM.KosmelaP.Ani´skoJ.MysiukiewiczO.Mar´cM.Mandarin peel as an auspicious functional filler for polymer composites. Macedonian Journal of Chemistry and Chemical Engineering. 2021;40: 89–106.Search in Google Scholar
da Silva GdA, d’Almeida JRM. Mechanical properties and morphology of HDPE/PA12 blends compatibilized with HDPE-alt-MAH. Polymers and Polymer Composites. 2022;30:1–13. https://doi.org/10.1177/09673911211064049da SilvaGdAd’AlmeidaJRM.Mechanical properties and morphology of HDPE/PA12 blends compatibilized with HDPE-alt-MAH. Polymers and Polymer Composites. 2022;30:1–13. https://doi.org/10.1177/09673911211064049Search in Google Scholar
Yu S, Hwang YH, Lee KT, Kim SO, Hwang JY, Hong SH. Outstanding strengthening and toughening behavior of 3D-printed fiber-reinforced composites designed by biomimetic interfacial heterogeneity. Advanced Science. 2022;9, 2103561. https://10.1002/advs.202103561.YuSHwangYHLeeKTKimSOHwangJYHongSH.Outstanding strengthening and toughening behavior of 3D-printed fiber-reinforced composites designed by biomimetic interfacial heterogeneity. Advanced Science. 2022;9, 2103561. https://10.1002/advs.202103561.Search in Google Scholar
Fazli A, Stevanovic T, Rodrigue D. Recycled HDPE/Natural Fiber Composites Modified with Waste Tire Rubber: A Comparison between Injection and Compression Molding. Polymers. 2022;14(15):3197. https://doi.org/10.3390/polym14153197FazliAStevanovicTRodrigueD.Recycled HDPE/Natural Fiber Composites Modified with Waste Tire Rubber: A Comparison between Injection and Compression Molding. Polymers. 2022;14(15):3197. https://doi.org/10.3390/polym14153197Search in Google Scholar
EL-Zayat MM, Abdel-Hakim A, Maysa AM. Effect of gamma radiation on the physico mechanical properties of recycled HDPE/modified sugarcane bagasse composite. Journal of Macromolecular Science. 2019, Part A. https://doi.org/10.1080/10601325.2018.1549949EL-ZayatMMAbdel-HakimAMaysaAM.Effect of gamma radiation on the physico mechanical properties of recycled HDPE/modified sugarcane bagasse composite. Journal of Macromolecular Science. 2019, Part A. https://doi.org/10.1080/10601325.2018.1549949Search in Google Scholar
Shershneva IN, Shershnev VA, Bubnova ML, Lesnichaya VA, Kolesnikova AM, Rabinskiy LN, Kydralieva KA, Dzhardimalieva GI. Fiber-Matrix-Coupling Agent Interactions in Glass-Fiber-Reinforced Polyethylene Composites Under Gamma Irradiation. Mechanics of Composite Materials. 2019;55. https://doi.org/10.1007/s11029-019-09836-7ShershnevaINShershnevVABubnovaMLLesnichayaVAKolesnikovaAMRabinskiyLNKydralievaKADzhardimalievaGI.Fiber-Matrix-Coupling Agent Interactions in Glass-Fiber-Reinforced Polyethylene Composites Under Gamma Irradiation. Mechanics of Composite Materials. 2019;55. https://doi.org/10.1007/s11029-019-09836-7Search in Google Scholar
Valadez-Gonzalez A, Cervantes-Uc JM, Veleva L. Mineral filler influence on the photo-oxidation of high density polyethylene: I. Accelerated UV chamber exposure test. Polymer Degradation and Stability.1999;63(2):253–260. https://doi.org/10.1016/S01413910(98)00102-5Valadez-GonzalezACervantes-UcJMVelevaL.Mineral filler influence on the photo-oxidation of high density polyethylene: I. Accelerated UV chamber exposure test. Polymer Degradation and Stability.1999;63(2):253–260. https://doi.org/10.1016/S01413910(98)00102-5Search in Google Scholar
Hassan A, Abd. Rahman N, Yahya R. Extrusion and injection-molding of glass fiber/MAPP/polypropylene: effect of coupling agent on DSC, DMA, and mechanical properties. Journal of Reinforced Plastics and Composites. 2011;30(14):1223–1232. https://doi.org/10.1177/0731684411417916HassanAAbd. RahmanNYahyaR.Extrusion and injection-molding of glass fiber/MAPP/polypropylene: effect of coupling agent on DSC, DMA, and mechanical properties. Journal of Reinforced Plastics and Composites. 2011;30(14):1223–1232. https://doi.org/10.1177/0731684411417916Search in Google Scholar
Kang KS, Lee SI, Lee TJ, Narayan R, Shin BY. Effect of biobased and biodegradable nucleating agent on the isothermal crystallization of poly(lactic acid). Korean Journal of Chemical Engineering. 2008;25(3):599–608. https://doi.org/10.1007/s11814-008-0101-7KangKSLeeSILeeTJNarayanRShinBY.Effect of biobased and biodegradable nucleating agent on the isothermal crystallization of poly(lactic acid). Korean Journal of Chemical Engineering. 2008;25(3):599–608. https://doi.org/10.1007/s11814-008-0101-7Search in Google Scholar
Ahmad H, Rostami-Tapeh-Esmaeil E, Rodrigue D. The effect of chemical crosslinking on the properties of rotomolded high density polyethylene. Applied Polymer Science. 2023; 141(1): e54744. https://doi.org/10.1002/app.54744.46AhmadHRostami-Tapeh-EsmaeilERodrigueD.The effect of chemical crosslinking on the properties of rotomolded high density polyethylene. Applied Polymer Science. 2023; 141(1): e54744. https://doi.org/10.1002/app.54744.46Search in Google Scholar
Wang W, Xiaochao Z, Zongyuan M, Weiquan Z. Effects of Gamma Radiation on the Impact Strength of Polypropylene (PP)/High Density Polyethylene (HDPE) Blends. Results in Physics. 2019;12:2169–2174. https://doi.org/10.1016/j.rinp.2019.02.020WangWXiaochaoZZongyuanMWeiquanZ.Effects of Gamma Radiation on the Impact Strength of Polypropylene (PP)/High Density Polyethylene (HDPE) Blends. Results in Physics. 2019;12:2169–2174. https://doi.org/10.1016/j.rinp.2019.02.020Search in Google Scholar