Accesso libero

Machinability Assessment of Aluminium Alloy EN AW-7075 T651 Under Varying Machining Conditions

, , ,  e   
30 giu 2025
INFORMAZIONI SU QUESTO ARTICOLO

Cita
Scarica la copertina

Fig. 1.

Experimental setup: a) schematic diagram; b) experimental procedure
Experimental setup: a) schematic diagram; b) experimental procedure

Fig. 2.

Cutting speed vs surface roughness parameters: a) Ra; b) Rz; c) RSm (fz = 0.1 mm/tooth)
Cutting speed vs surface roughness parameters: a) Ra; b) Rz; c) RSm (fz = 0.1 mm/tooth)

Fig. 3

Feed per tooth vs surface roughness parameters: a) Ra; b) Rz; c) RSm (vc = 300 m/min)
Feed per tooth vs surface roughness parameters: a) Ra; b) Rz; c) RSm (vc = 300 m/min)

Fig. 4.

Variable feed per tooth vs surface roughness parameters: a) Ra; b) Rz; c) RSm (vc = 900 m/min)
Variable feed per tooth vs surface roughness parameters: a) Ra; b) Rz; c) RSm (vc = 900 m/min)

Fig. 5.

Variations in the cutting force component Fx during a milling process conducted with variable vc
Variations in the cutting force component Fx during a milling process conducted with variable vc

Fig. 6.

Variations in the cutting force component Fx during a milling process conducted with variable fz (vc = 300 m/min)
Variations in the cutting force component Fx during a milling process conducted with variable fz (vc = 300 m/min)

>Fig. 7.

Variations in the cutting force component Fx during a milling process conducted with variable fz (vc = 900 m/min)
Variations in the cutting force component Fx during a milling process conducted with variable fz (vc = 900 m/min)

Fig. 8.

Variable cutting speed vs cutting force for: a) PCD; b) carbide tool (fz = 0.1 mm/tooth)
Variable cutting speed vs cutting force for: a) PCD; b) carbide tool (fz = 0.1 mm/tooth)

Fig. 9.

Feed per tooth vs cutting force for: a) PCD; b) carbide tool (vc = 300 m/min)
Feed per tooth vs cutting force for: a) PCD; b) carbide tool (vc = 300 m/min)

Fig. 10.

Feed per tooth vs cutting force for: a) PCD; b) carbide tool (vc = 900 m/min)
Feed per tooth vs cutting force for: a) PCD; b) carbide tool (vc = 900 m/min)

Parameters of milling process

vc (m/min) fz (mm/tooth) n (rpm) vf (mm/min)
100 0.100 2 654 796
300 7 962 2 389
500 13 270 3 981
700 18 577 5 573
900 23 885 7 166
300 0.050 7 962 1 194
0.075 1 791
0.100 2 389
0.125 2 986
0.150 3 583
900 0.050 23 885 3 583
0.075 5 374
0.100 7 166
0.125 8 957
0.150 10 748

Regression equations for the cutting force components

Component PCD Carbide
vc
Fx y = 2.1734 × 10-6x3 - 0.0031486x2 + 1.3387x – 181.5044 y = 6.8696 × 10-7x3 - 0.00046211x2 - 0.022684x + 194.5068
R2 = 0.92574 R2 = 0.99967
Fy y = 2.6357 × 10-6x3 - 0.0040011x2 + 1.6079x – 134.8438 y = 9.7847 × 10-7x3 - 0.0012124x2 + 0.31351x + 103.4101
R2 = 0.80254 R2 = 0.97897
Fz y = 2.3882 × 10-7x3 - 0.00033649x2 + 0.19507x – 160.758 y = -4.3391 × 10-8x3 + 0.00019882x2 - 0.053533x + 44.2173
R2 = 0.92635 R2 = 0.9991
fz (vc = 300 m/min)
Fx y = -96682.6667x3 + 25468.1943x2 + 496.6658x + 165.8101 y = 97571.7333x3 - 26474.3086x2 + 3036.7114x + 25.412
R2 = 0.99988 R2 = 0.99437
Fy y = 109699.2x3 - 42818.3886x2 + 6999.1857x - 33.956 y = -58838.9333x3 + 19257.8057x2 - 2257.4428x + 210.1391
R2 = 0.99976 R2 = 0.99969
Fz y = 15057.0667x3 - 12366.2514x2 + 2759.5016x + 25.1968 y = -275146.5067x3 + 96013.5394x2 - 10386.9419x + 395.9015
R2 = 0.96265 R2 = 0.99571
fz (vc = 900 m/min)
Fx y = 170491.7333x3 - 52457.1543x2 + 5869.7915x + 178.4637 y = 413898.1333x3 - 141383.1543x2 + 15794.7885x - 288.4818
R2 = 0.98706 R2 = 0.9745
Fy y = 232014.1333x3 - 79230.3303x2 + 8143.1002x + 12.1011 y = 29947.2x3 - 15807.84x2 + 2755.607x - 17.3301
R2 = 0.87723 R2 = 0.84802
Fz y = 57291.3067x3 - 17403.6217x2 + 2089.9487x + 147.4216 y = 947917.8133x3 - 281117.8789x2 + 26232.8967x - 631.465
R2 = 0.98346 R2 = 0.99651

Regression equations for surface roughness parameters

Parameter PCD Carbide
vc
Ra y = -2.2396 × 10-9x3 + 3.7195 × 10-6x2 - 0.0022461x + 1.6193 y = 1.1458 × 10-9x3 - 2.0223 × 10-6x2 + 0.00014211x + 2.1396
R2 = 0.99992 R2 = 0.99358
Rz y = -5.2083 × 10-10x3 + 5.1339 × 10-7x2 - 0.00072693x + 5.555 y = 3.125 × 10-9x3 - 3.9732× 10-6x2 - 0.00049554x + 6.8933
R2 = 0.93879 R2 = 0.99697
RSm y = -7.5521 × 10-10x3 + 1.0158 × 10-6x2 - 0.00042798x + 0.22112 y = -1.0417 × 10-10x3 + 9.1964 × 10-8x2 - 0.00010467x + 0.24011
R2 = 0.96237 R2 = 0.99545
fz (vc = 300 m/min)
Ra y = 8.8889x3 - 43.2381x2 + 16.6754x + 0.001 y = 1493.3333x3 - 416x2 + 44.2667x + 0.39
R2 = 0.99686 R2 = 1
Rz y = -4800x3 + 1228.5714x2 - 73.7143x + 5.23 y = 533.3333x3 - 148.5714x2 + 23.381x + 5.24
R2 = 0.99256 R2 = 0.99824
RSm y = -57.7778x3 + 9.1619x2 + 1.4737x + 0.0045667 y = 5.3333x3 - 2.0571x2 + 0.8481x + 0.15
R2 = 0.97841 R2 = 0.99985
fz (vc = 900 m/min)
Ra y = -1395.5556x3 + 396.381x2 - 23.104x + 0.88433 y = -320x3 + 137.1429x2 - 8.8286x + 1.42
R2 = 0.93968 R2 = 0.97975
Rz y = -1244.4444x3 + 161.9048x2 + 38.0635x + 0.73333 y = 1.1446 × 10-11x3 + 11.4286x2 + 11.7143x + 4.4
R2 = 0.99764 R2 = 0.98848
RSm y = -268.4444x3 + 88.0571x2 - 7.6403x + 0.28237 y = 21.3333x3 - 5.8286x2 + 1.1324x + 0.077
R2 = 0.9568 R2 = 0.99786