Accesso libero

Study of Contact Algorithms Influencing Specimen Response in Numerical Simulation of Dynamic Compression Test

INFORMAZIONI SU QUESTO ARTICOLO

Cita

Y. GH, Scott T, W. SP. Concrete Slab Damage and Hazard from Close-In Detonation of Weaponized Commercial Unmanned Aerial Vehicles. J Struct Eng [Internet]. 2021;147(11):4021190. Available from: https://doi.org/10.1061/(ASCE)ST.1943-541X.0003158 Search in Google Scholar

Morka A, Kędzierski P, Muzolf P. Optimization of the structure of a ceramic-aluminum alloy composite subjected to the impact of hard steel projectiles. Mech Compos Mater. 2016;52(3):333–46. Search in Google Scholar

Kędzierski P, Morka A, Sławiński G, Niezgoda T. Optimization of two-component armour. Bull Polish Acad Sci Tech Sci. 2015;63(1): 173–9. Search in Google Scholar

Wang J, Yin Y, Esmaieli K. Numerical simulations of rock blasting damage based on laboratory-scale experiments. J Geophys Eng. 2018;15(6):2399–417. Search in Google Scholar

Liu K, Wu C, Li X, Li Q, Fang J, Liu J. A modified HJC model for improved dynamic response of brittle materials under blasting loads. Comput Geotech [Internet]. 2020;123(December 2019):103584. Available from: https://doi.org/10.1016/j.compgeo.2020.103584 Search in Google Scholar

Simons EC, Weerheijm J, Sluys LJ. A viscosity regularized plasticity model for ceramics. Eur J Mech A/Solids. 2018; Search in Google Scholar

Johnson GR, Holmquist TJ. Response of boron carbide subjected to large strains, high strain rates, and high pressures. J Appl Phys. 1999;85(12):8060–73. Search in Google Scholar

Holmquist TJ, Johnson GR, Cook WH. A computational constitutive model for concrete subjected to large strains, high strain rates, and high pressures. In: The 14th international symposium on ballistic. Quebec: Arlington, VA: American Defense Preparedness Association. 1993; 591–600. Search in Google Scholar

Mardalizad A, Caruso M, Manes A, Giglio M. Investigation of mechanical behaviour of a quasi-brittle material using Karagozian and Case concrete (KCC) model. J Rock Mech Geotech Eng. 2019. Search in Google Scholar

Pająk M, Janiszewski J, Kruszka L. Laboratory investigation on the influence of high compressive strain rates on the hybrid fibre reinforced self-compacting concrete. Constr Build Mater. 2019;227: 116687. Search in Google Scholar

Sucharda O, Pajak M, Ponikiewski T, Konecny P. Identification of mechanical and fracture properties of self-compacting concrete beams with different types of steel fibres using inverse analysis. Constr Build Mater [Internet]. 2017;138:263–75. Available from: http://dx.doi.org/10.1016/j.conbuildmat.2017.01.077 Search in Google Scholar

Máca P, Sovják R, Konvalinka P. Mix design of UHPFRC and its response to projectile impact. Int J Impact Eng. 2014;63:158–63. Search in Google Scholar

Sovják R, Vavřiník T, Zatloukal J, Máca P, Mičunek T, Frydrýn M. Resistance of slim UHPFRC targets to projectile impact using in-service bullets. Int J Impact Eng. 2015;76:166–77. Search in Google Scholar

Sielicki PW, Łodygowski T. Masonry wall behaviour under explosive loading. Eng Fail Anal. 2019;104:274–91. Search in Google Scholar

Wu H, Qin, Zhang YD, Gong ZM, Wu H, Fang Q, et al. Semi-theoretical analyses of the concrete plate perforated by a rigid projectile. Acta Mech Sin. 2012;28(6):1630–43. Search in Google Scholar

Wang Z liang L, Li Y chi C, Shen RF. Numerical simulation of tensile damage and blast crater in brittle rock due to underground explosion. Int J Rock Mech Min Sci. 2007;44(5):730–8. Search in Google Scholar

Mazurkiewicz Ł, Damaziak K, Małachowski J, Baranowski P. Parametric study of numerically modelled delamination process in a composite structure subjected to dynamic loading. Eng Trans. 2013;61(1):15–31. Search in Google Scholar

Mazurkiewicz Ł, Małachowski J, Baranowski P. Optimization of protective panel for critical supporting elements. Compos Struct. 2015;134:493–505. Search in Google Scholar

Peng Y, Wu H, Fang Q, Liu JZ, Gong ZM. Flat nosed projectile penetrating into UHP-SFRC target: Experiment and analysis. Int J Impact Eng. 2016;93:88–98. Search in Google Scholar

Liang X, Wu C. Meso-scale modelling of steel fibre reinforced concrete with high strength. Constr Build Mater [Internet]. 2018;165:187–98. Available from: https://doi.org/10.1016/j.conbuildmat.2018.01.028 Search in Google Scholar

Wu H, Li YC, Fang Q, Peng Y. Scaling effect of rigid projectile penetration into concrete target: 3D mesoscopic analyses. Constr Build Mater. 2019;208:506–24. Search in Google Scholar

Liu Z, Zhang C, Zhang C, Gao Y, Zhou H, Chang Z. Deformation and failure characteristics and fracture evolution of cryptocrystalline basalt. J Rock Mech Geotech Eng. 2019;11(5):990–1003. Search in Google Scholar

Lv TH, Chen XW, Chen G. The 3D meso-scale model and numerical tests of split Hopkinson pressure bar of concrete specimen. Constr Build Mater. 2018;160:744–64. Search in Google Scholar

Wang J, Yin Y, Luo C. Johnson–Holmquist-II(JH-2) Constitutive Model for Rock Materials: Parameter Determination and Application in Tunnel Smooth Blasting. Appl Sci. 2018 Sep 16;8(9):1675. Search in Google Scholar

Kang HM, Kang MS, Kim MS, Kwak HK, Park LJ, Cho SH. Experimental and numerical study of the dynamic failure behavior of rock materials subjected to various impact loads. In: WIT Transactions on the Built Environment. WITPress; 2014;357–67. Search in Google Scholar

Li XB, Hong L, Yin TB, Zhou ZL, Ye ZY. Relationship between diameter of split Hopkinson pressure bar and minimum loading rate under rock failure. J Cent South Univ Technol.2008;15(2):218–23. Search in Google Scholar

Pająk M, Baranowski P, Janiszewski J, Kucewicz M, Mazurkiewicz Ł, Łaźniewska-Piekarczyk B. Experimental testing and 3D meso-scale numerical simulations of SCC subjected to high compression strain rates. Constr Build Mater. 2021;302. Search in Google Scholar

Zhang J, Wang Z, Yang H, Wang Z, Shu X. 3D meso-scale modeling of reinforcement concrete with high volume fraction of randomly distributed aggregates. Constr Build Mater. 2018;164:350–61. Search in Google Scholar

Zhang X, Hao H, Ma G. Dynamic material model of annealed soda-lime glass. Int J Impact Eng. 2015;77:108–19. Search in Google Scholar

Ruggiero A, Iannitti G, Bonora N, Ferraro M. Determination of Johnson-holmquist constitutive model parameters for fused silica. EPJ Web Conf. 2012;26:04011. Search in Google Scholar

Hao Y, Hao H, Zhang XH. Numerical analysis of concrete material properties at high strain rate under direct tension. Int J Impact Eng. 2012;39(1):51–62. Search in Google Scholar

Xiao J, Li W, Corr DJ, Shah SP. Effects of interfacial transition zones on the stress-strain behavior of modeled recycled aggregate concrete. Cem Concr Res. 2013;52:82–99. Search in Google Scholar

Kucewicz M, Baranowski P, Małachowski J. Determination and validation of Karagozian-Case Concrete constitutive model parameters for numerical modeling of dolomite rock. Int J Rock Mech Min Sci. 2020;129. Search in Google Scholar

Kucewicz Michałand Baranowski PGR, Małachowski J. Investigation of dolomite’rock brittle fracture using fully calibrated Karagozian Case Concrete model. Int J Mech Sci. 2022;107197. Search in Google Scholar

Huang Y, Yang Z, Ren W, Liu G, Zhang C. 3D meso-scale fracture modelling and validation of concrete based on in-situ X-ray Computed Tomography images using damage plasticity model. Int J Solids Struct [Internet]. 2015;67–68:340–52. Available from: http://dx.doi.org/10.1016/j.ijsolstr.2015.05.002 Search in Google Scholar

Pająk M, Baranowski P, Janiszewski J, Kucewicz M, Mazurkiewicz Ł, Łaźniewska-Piekarczyk B. Experimental testing and 3D meso-scale numerical simulations of SCC subjected to high compression strain rates. Constr Build Mater. 2021;302. Search in Google Scholar

Zhang R, Li P yu, Zhi X dong, Wang Y hui, Fan F. Johnson– Holmquist-II model of annealed glass and its verification in dynamic compression test. Structures [Internet]. 2023;53(March):396–407. Available from: https://doi.org/10.1016/j.istruc.2023.04.082 Search in Google Scholar

Li M, Hao H, Cui J, Hao Y fei. Numerical investigation of the failure mechanism of cubic concrete specimens in SHPB tests. Def Technol [Internet]. 2022;18(1):1–11. Available from: https://doi.org/10.1016/j.dt.2021.05.003 Search in Google Scholar

Ren L, Yu X, Guo Z, Xiao L. Numerical investigation of the dynamic increase factor of ultra-high performance concrete based on SHPB technology. Constr Build Mater [Internet]. 2022;325:126756. Available from: https://doi.org/10.1016/j.conbuildmat.2022.126756 Search in Google Scholar

Lv Y, Wu H, Dong H, Zhao H, Li M, Huang F. Experimental and numerical simulation study of fiber-reinforced high strength concrete at high strain rates. J Build Eng [Internet]. 2023;65:105812. Available from: https://doi.org/10.1016/j.jobe.2022.105812 Search in Google Scholar

Deshpande VM, Chakraborty P, Chakraborty T, Tiwari V. Application of copper as a pulse shaper in SHPB tests on brittle materials- experimental study, constitutive parameters identification, and numerical simulations. Mech Mater [Internet]. 2022;171:104336. Available from: https://doi.org/10.1016/j.mechmat.2022.104336 Search in Google Scholar

Kucewicz M, Baranowski P, Mazurkiewicz Ł, Małachowski J. Comparison of selected blasting constitutive models for reproducing the dynamic fragmentation of rock. Int J Impact Eng. 2023;173. Search in Google Scholar

Johnson GR, Holmquist TJ. An improved computational constitutive model for brittle materials. In AIP Publishing; 2008;981–4. Search in Google Scholar

Holmquist TJ, Johnson GR, Grady DE, Lopatin CM, Hertel ES. High strain rate properties and constitutive modeling of glass. In: Mayseless M, Bodner S., editors. Proceedings of 15th International Symposium on Ballistics. Jerusalem, Israel; 1995;234–44. Search in Google Scholar

Holmquist TJ, Templeton DW, Bishnoi KD. Constitutive modeling of aluminum nitride for large strain, high-strain rate, and high-pressure applications. Int J Impact Eng. 2001;25(3):211–31. Search in Google Scholar

Ai HA, Ahrens TJ. Simulation of dynamic response of granite: A numerical approach of shock-induced damage beneath impact craters. Int J Impact Eng. 2006;33(1–12):1–10. Search in Google Scholar

Dehghan Banadaki MM, Mohanty B. Numerical simulation of stress wave induced fractures in rock. Int J Impact Eng. 2012;40–41:16–25. Search in Google Scholar

Stanislawek S, Morka A, Niezgoda T. Pyramidal ceramic armor ability to defeat projectile threat by changing its trajectory. Bull Polish Acad Sci Tech Sci. 2015;63(4):843–9. Search in Google Scholar

Ruggiero A, Iannitti G, Bonora N, Ferraro M. Determination of Johnson-holmquist constitutive model parameters for fused silica. EPJ Web Conf 26. 2012;04011:1–4. Search in Google Scholar

Zhang X, Hao H, Ma G. Dynamic material model of annealed soda-lime glass. Int J Impact Eng. 2015;77:108–19. Search in Google Scholar

Baranowski P, Kucewicz M, Gieleta R, Stankiewicz M, Konarzewski M, Bogusz P, et al. Fracture and fragmentation of dolomite rock using the JH-2 constitutive model: Parameter determination, experiments and simulations. Int J Impact Eng. 2020;140:103543. Search in Google Scholar

Baranowski P, Kucewicz M, Janiszewski J. JH-2 constitutive model of sandstone for dynamic problems. Submitt to J (under Rev Int J Impact Eng. 2023. Search in Google Scholar

Pająk M, Baranowski P, Janiszewski J, Kucewicz M, Mazurkiewicz Ł, Łaźniewska-Piekarczyk B. Experimental testing and 3D meso-scale numerical simulations of SCC subjected to high compression strain rates. Constr Build Mater. 2021;302:124379. Search in Google Scholar

Hallquist J. LS-DYNA Theory Manual [Internet]. Vol. 19. Livermore Software Technology Corporation (LSTC); 2019. 886 p. Available from:http://ftp.lstc.com/anonymous/outgoing/jday/manuals/DRAFT_Theory.pdf Search in Google Scholar

Kurzawa A, Pyka D, Jamroziak K, Bocian M, Kotowski P. Analysis of ballistic resistance of composites based on EN AC-44200 aluminum alloy reinforced with Al 2 O 3 particles. Compos. Struct.2018;201 :834 –44. Search in Google Scholar

Pach J, Pyka D, Jamroziak K, Mayer P. The experimental and numerical analysis of the ballistic resistance of polymer composites. Compos Part B. 2017;113:24–30. Search in Google Scholar

Mazurkiewicz Ł, Małachowski J, Tomaszewski M, Baranowski P, Yukhymets P. Performance of steel pipe reinforced with composite sleave. Compos Struct. 2018;183:199–211. Search in Google Scholar

Zienkiewicz O, Taylor R, Zhu JZ. The Finite Element Method: its Basis and Fundamentals: Seventh Edition. The Finite Element Method: its Basis and Fundamentals: Seventh Edition. 2013. 1–714 p. Search in Google Scholar

Bathe K J. Finite Element Procedures [M] [Internet]. 2005; 1037 Available from: http://books.google.com/books?id=wKRRAAAAMAAJ&pgis=1%5Cnftp://ftp.demec.ufpr.br/disciplinas/EME748/Textos/Bathe,K.-J.-FiniteElementProcedures-1996-Prentice-Hall-ISBN0133014584-1052s.pdf Search in Google Scholar

Logan D.L. A first course in the finite element method. 5th ed. Cengage Learning; 2010. Search in Google Scholar

J. R. An Introduction to the Finite Element Method. 3rd ed. McGraw-Hill Education; 2005. Search in Google Scholar

Kleiber M, Breitkopf P. Finite Element Methods in Structural Mechanics: With Pascal Programs. Ellis Horwood; 1993. Search in Google Scholar

Gander MJ, Wanner G. From euler, ritz, and galerkin to modern computing. SIAM Rev. 2012;54(4):627–66. Search in Google Scholar

Gingold RA, Monaghan JJ. Smoothed particle hydrodynamics: theory and application to non-spherical stars. Mon Not R Astron Soc. 1977;181(3):375–89. Search in Google Scholar

Liu GR, Gu YT. An introduction to meshfree methods and their programming. An Introd to Meshfree Methods Their Program. 2005;1–479. Search in Google Scholar

Liu MB, Liu GR. Smoothed particle hydrodynamics (SPH): An overview and recent developments. Arch Comput Methods Eng. 2010;17(1):25–76. Search in Google Scholar

Gasiorek D, Baranowski P, Malachowski J, Mazurkiewicz L, Wiercigroch M. Modelling of guillotine cutting of multi-layered aluminum sheets. J Manuf Process [Internet]. 2018 Aug;34:374–88. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1526612518307059 Search in Google Scholar

Baranowski Pawełand Janiszewski J, Malachowski J. Study on computational methods applied to modelling of pulse shaper in split-Hopkinson bar. Arch Mech. 2014;66(6):429–52. Search in Google Scholar

Wriggers P. Computational contact mechanics. Computational Contact Mechanics. 2006;1–518. Search in Google Scholar

Vulović S, Živković M, Grujović N, Slavković R. A comparative study of contact problems solution based on the penalty and Lagrange multiplier approaches. J Serbian Soc Comput Mech. 2007;1(1):174–83. Search in Google Scholar

Yastrebov VA. Introduction to Computational Contact. In: Numerical Methods in Contact Mechanics. 2013; 1–14. Search in Google Scholar

Kucewicz M, Baranowski P, Małachowski J, Ma J. Determination and validation of Karagozian-Case Concrete constitutive model parameters for numerical modeling of dolomite rock. Int J Rock Mech Min Sci. 2020;129. Search in Google Scholar