Accesso libero

Effectiveness of Friction Force Reduction in Sliding Motion Depending on the Frequency of Longitudinal Tangential Vibrations, Sliding Velocity and Normal Pressure

INFORMAZIONI SU QUESTO ARTICOLO

Cita

Gutowski P, Leus M. Computational model for friction force estimation in sliding motion at transverse tangential vibrations of elastic contact support. Tribology International. 2015;90:455-462. https://doi.org/10.1016/j.triboint.2015.04.044 Search in Google Scholar

Gutowski P, Leus M. Computational model of friction force reduction at arbitrary direction of tangential vibrations and its experimental verification. Tribology International. 2020;143:106065. https://doi.org/10.1016/j.triboint.2019.106065 Search in Google Scholar

Gutowski P, Leus M. Estimation of the tangential transverse vibrations effect on the friction force with the use of LuGre model. Acta Mechanica. 2021;232(10):3849-3861. https://doi.org/10.1007/s00707-021-03033-1 Search in Google Scholar

Gutowski P, Leus M. The effect of longitudinal tangential vibrations on friction and driving forces in sliding motion. Tribology International. 2012;55:108-118. https://doi.org/10.1016/j.triboint.2012.05.023 Search in Google Scholar

Leus M. Investigation of the longitudinal tangential contact vibrations influence on the friction force. Doctoral thesis. 2010. Search in Google Scholar

Leus M, Gutowski P. Practical possibilities of utilization of tangential longitudinal vibrations for controlling the friction force and reduction of drive force in sliding motion. Mechanics and Mechanical Engineering. 2011;15(4):103-113. Search in Google Scholar

Rybkiewicz M, Gutowski P, Leus M. Experimental and numerical analysis of stick-slip suppression with the use of longitudinal tangential vibration. Journal of Theoretical and Applied Mechanics. 2020;58(3):637-648. https://doi.org/10.15632/jtam-pl/116594 Search in Google Scholar

Rybkiewicz M, Leus M. Selection of the friction model for numerical analyses of the impact of longitudinal vibration on stick-slip movement. Advances in Science and Technology Research Journal. 2021;15(3):277-287. https://doi.org/10.12913/22998624/141184 Search in Google Scholar

Gao H, De Volder M, Cheng T, Bao G, Reynaerts D. A pneumatic actuator based on vibration friction reduction with bending longitudinal vibration mode. Sensors and Actuators A: Physical. 2016;252:112-119. https://doi.org/10.1016/j.sna.2016.10.039 Search in Google Scholar

Kapelke S, Seemann W. On the effect of longitudinal vibrations on dry friction: Modelling aspects and experimental investigations. Tribology Letters. 2018;66(3):1-11. https://doi.org/10.1007/s11249-018-1031-0 Search in Google Scholar

Kapelke S, Seemann W, Hetzler H. The effect of longitudinal high-frequency in-plane vibrations on a 1-DoF friction oscillator with compliant contact. Nonlinear Dynamics. 2017;88:3003-3015. https://doi.org/10.1007/s11071-017-3428-y Search in Google Scholar

Kumar VC, Hutchings IM. Reduction of sliding friction of metals by the application of longitudinal or transverse ultrasonic vibration. Tribology International. 2004;37(10):833-40. https://doi.org/10.1016/j.triboint.2004.05.003 Search in Google Scholar

Kutomi H, Sase N, Fujii H. Development of friction controller. Proceedings of the International Conf AMPT’99. 1999;I:605-612. Search in Google Scholar

Littmann W, Stork H, Wallaschek J. Reduction of friction using piezoelectrically excited ultrasonic vibrations. Proceedings of the SPIE’s 8th Annual International Symposium on Smart Structures and Material, Billingham, Washington 2001. 2001;302-311. https://doi.org/10.1117/12.432714 Search in Google Scholar

Littmann W, Stork H, Wallaschek J. Sliding friction in the presence of ultrasonic oscillations: superposition of longitudinal oscillations. Archive of Applied Mechanics. 2001;71:549-54. https://doi.org/10.1007/s004190100160 Search in Google Scholar

Liu W, Ni H, Wang P, Zhao B. Analytical investigation of the friction reduction performance of longitudinal vibration based on the modified elastoplastic contact model. Tribology International. 2020;146: 106237. https://doi.org/10.1016/j.triboint.2020.106237 Search in Google Scholar

Qu H, Zhou N, Guo W, Qu J. A model of friction reduction with in-plane high-frequency vibration. Proceedings of the Institution of Mechanical Engineers. Part J: Journal of Engineering Tribology. 2016;230(8):962-967. https://doi.org/10.1177/135065011562101 Search in Google Scholar

Sase N, Kurahashi T, Fujii M, Kutomi H, Fujii H. Control of friction coefficient between metal surfaces. Proceedings of the International Conference AMPT’97. 1997;2:609-615. Search in Google Scholar

Storck H, Littmann W, Wallaschek J, Mracek M. The effect of friction reduction in presence of ultrasonic vibrations and its relevance to traveling wave ultrasonic motors. Ultrasonic. 2002;40:379-383. http://dx.doi.org/10.1016/S0041-624X(02)00126-9 Search in Google Scholar

Teidelt E, Starcevic J, Popov VL. Influence of ultrasonic oscillation on static and sliding friction. Tribology Letters. 2012;48:51-62. https://doi.org//10.1007/s11249-012-9937-4 Search in Google Scholar

Tsai CC, Tseng CH. The effect of friction reduction in presence of in-plane vibrations. Archive of Applied Mechanics. 2006;75:164-76. https://doi.org/10.1007/s00419-005-0427-0 Search in Google Scholar

Wang P, Ni H, Wang R, Li Z, Wang Y. Experimental investigation of the effect of in-plane vibrations on friction for different materials. Tribology International. 2016;99:237-247. https://doi.org/10.1016/j.triboint.2016.03.021 Search in Google Scholar

Wang P, Ni H, Wang R, Liu W, Lu S. Research on the mechanism of in-plane vibration on friction reduction. Materials. 2017;10(9):1-21. https://doi.org/10.3390/ma10091015 Search in Google Scholar

Yang CL, Wu CS, Shi L. Analysis of friction reduction effect due to ultrasonic vibration exerted in friction stir welding. Journal of Manufacturing Processes. 2018;35:118-126. https://doi.org/10.1016/j.jmapro.2018.07.025 Search in Google Scholar

Shao G, Li H, Zhan M. A Review on Ultrasonic-Assisted Forming: Mechanism, Model, and Process. Chinese Journal of Mechanical Engineering. 2021;34(1):99. https://doi.org/10.1186/s10033-021-00612-0 Search in Google Scholar

Chovdhury MA, Helali MM. The effect of frequency of vibration and humidity on the coefficient of friction. Tribology International. 2006; 39(9):958-962. https://doi.org/10.1016/j.triboint.2005.10.002 Search in Google Scholar

Chovdhury MA, Helali MM. The effect of amplitude of vibration on the coefficient of friction for different materials. Tribology International. 2008;41(4):307-314. https://doi.org/10.1016/j.triboint.2007.08.005 Search in Google Scholar

Hess DP, Soom A. Normal vibrations and friction under harmonic loads: part I – Hertzian contacts. Journal of Tribology. 1991;113(1): 80-86. https://doi.org/10.1115/1.2920607 Search in Google Scholar

Popov M, Popov VL, Popov NV. Reduction of friction by normal oscillations. I. Influence of contact stiffness. Friction. 2017;5(1):45-55. https://doi.org/10.1007/s40544-016-0136-4 Search in Google Scholar

Xinyu M, Popov VL, Stracevic J, Popov M. Reduction of friction by normal oscillations. II. In-plane system dynamics. Friction. 2017;5(2): 194-206. https://doi.org/10.1007/s40544-017-0146-x Search in Google Scholar

Cheng Y, Zhu PZ, Li R. The influence of vertical vibration on nanoscale friction: a molecular dynamics simulation study. Crystals. 2018;8(3):129. https://doi.org/10.3390/cryst8030129 Search in Google Scholar

Dahl PR. A solid friction model. Technical Report TOR-158(3107-18), The Aerospace Corporation, El Segundo, CA. 1968. Search in Google Scholar

Dahl PR. Solid friction damping of mechanical vibrations. AIAA Journal. 1976;14(12):1675-1682. https://doi.org/10.2514/3.61511 Search in Google Scholar

Dupont P, Armstrong B, Hayward V. Elasto-plastic friction model: contact compliance and stiction. Proceedings of the American Control Conference, Chicago, Illinois 2000. 2000:1072-1077. https://doi.org/10.1109/ACC.2000.876665 Search in Google Scholar

Dupont P, Hayward V, Armstrong B, Altpeter F. Single state elasto-plastic friction models. IEEE Transactions on Automatic Control. 2002;47(5):787-792. https://doi.org/10.1109/TAC.2002.1000274 Search in Google Scholar

Leus M, Gutowski P. The experimental analysis of the tangential stiffness of the flat contact joints. Modelling in Engineering. 2009; 6(37):185-192 [in Polish]. Search in Google Scholar