Accesso libero

Standard and Fractional Discrete-Time Linear Systems with Zero Transfer Matrices

INFORMAZIONI SU QUESTO ARTICOLO

Cita

Abu-Saris R, Al-Mdallal Q. On the asymptotic stability of linear system of fractional-order difference equations. Fract. Calc. Appl. Anal. 2013; 16: 613-629. Search in Google Scholar

Antsaklis E, Michel A. Linear Systems. Birkhauser, Boston, 2006. Search in Google Scholar

Cermak J, Gyori I, Nechvatal L. On explicit stability conditions for a linear fractional difference system. Fract. Calc. Appl. Anal. 2015; 18: 651-672. Search in Google Scholar

Dörfler F, Coulson J, Markovsky I. Bridging direct & indirect data-driven control formulations via regularizations and relaxations. Trans. Automat. Contr., 2023. Search in Google Scholar

Farina L, Rinaldi S. Positive Linear Systems: Theory and Applications. J. Wiley & Sons, New York, 2000. Search in Google Scholar

Goodrich C, Peterson A. Discrete Fractional Calculus. Springer, Cham, 2015. Search in Google Scholar

Kaczorek T. Positivity and reachability of fractional electrical circuits. Acta Mechanica et Automatica. 2011; 5(2): 42-51. Search in Google Scholar

Kaczorek T. Positive linear systems consisting of n subsystems with different fractional orders. IEEE Trans. Circuits and Systems. 2011; 58(6): 1203-1210. Search in Google Scholar

Kaczorek T. Selected Problems of Fractional Systems Theory. Berlin, Germany: Springer-Verlag, 2011. Search in Google Scholar

Kaczorek T. Normal positive electrical circuits. IET Control Theory Appl. 2015; 9(5): 691–699. Search in Google Scholar

Kaczorek T, Rogowski K. Fractional Linear Systems and Electrical Circuits. Studies in Systems, Decision and Control, Vol. 13, Springer, 2015. Search in Google Scholar

Kailath T. Linear systems. Prentice Hall, Englewood Cliffs, New York, 1980. Search in Google Scholar

Kalman R. Mathematical description of linear systems. SIAM J. Control. 1963; 1(2): 152-192. Search in Google Scholar

Kalman R. On the general theory of control systems. Proc. First Intern. Congress on Automatic Control. London, UK: Butterworth, 1960; 481-493. Search in Google Scholar

Klamka J. Controllability of Dynamical Systems. Kluwer, Dordrecht, Netherlands, 1981. Search in Google Scholar

Markovsky I, Dörfler F. Behavioral systems theory in data-driven analysis, signal processing, and control. Annual Reviews in Control. 2021; 52: 42–64. Search in Google Scholar

Mozyrska D, Wyrwas M. The Z-transform method and delta type fractional difference operators. Discrete Dyn. Nat. Soc. 2015; (2-3): 1-12. Search in Google Scholar

Oldham K, Spanier J. The fractional calculus: integrations and differentiations of arbitrary order. New York, USA: Academic Press, 1974. Search in Google Scholar

Ostalczyk P. Discrete Fractional Calculus: Applications in Control and Image Processing; Series in Computer Vision, World Scientific Publishing, Hackensack, New York, 2016. Search in Google Scholar

Podlubny I. Fractional differential equations. San Diego, USA: Academic Press, 1999. Search in Google Scholar

Poldermann JW, Willems J.C. Introduction to Mathematical Systems Theory. Texts in Applied Mathematics, vol. 26. Springer, New York, NY, 1998. Search in Google Scholar

Rosenbrock H. State-space and multivariable theory. New York, USA: J. Wiley, 1970. Search in Google Scholar

Ruszewski A. Stability of discrete-time fractional linear systems with delays, Archives of Control Sciences. 2019; 29(3): 549-567. Search in Google Scholar

Sabatier J, Agrawal OP, Machado JAT. Advances in Fractional Calculus, Theoretical Developments and Applications in Physics and Engineering. Springer, London, 2007. Search in Google Scholar

Sajewski Ł. Stabilization of positive descriptor fractional discrete-time linear systems with two different fractional orders by decentralized controller. Bull. Pol. Acad. Sci. Techn. 2017; 65(5): 709-714. Search in Google Scholar

Song TT, Wu GC, Wei JL. Hadamard fractional calculus on time scales, Fractals. 2022; 30(7), 2250145. Search in Google Scholar

Sun HG, Zhang Y, Baleanu D, Chen W, Chen YQ. A new collection of real world applications of fractional calculus in science and engineering. Commun. Nonlinear Sci. Numer. Simul. 2018; 64: 213-231. Search in Google Scholar

Wu GC, Abdeljawad T, Liu J, Baleanu D, Wu KT. Mittag-Leffler stability analysis of fractional discrete-time neural networks via fixed point technique. Nonlinear Analysis: Model. Contr. 2019; 24: 919-936. Search in Google Scholar