Accesso libero

Failure Analysis of Beam Composite Elements Subjected to Three-Point Bending Using Advanced Numerical Damage Models

INFORMAZIONI SU QUESTO ARTICOLO

Cita

1. Fascetti A, Feo L, Nistic N, Penna R. Web-flange behavior of pultruded GFRP I beams: a lattice model for the interpretation of experimental results. Composites Part B Eng, 2016;100:257-269.10.1016/j.compositesb.2016.06.058 Search in Google Scholar

2. Berardi VP, Perrella M, Feo L, Cricrì G. Creep behavior of GFRP laminates and their phases: experimental investigation and analytical modeling. Composites Part B Eng, 2017;122:136-144.10.1016/j.compositesb.2017.04.015 Search in Google Scholar

3. Kubiak T, Kolakowski Z, Swiniarski J, Urbaniak M, Gliszczynski A. Local buckling and post-buckling of composite channel-section beams – numerical and experimental investigations. Composites Part B Eng, 2016;91:176-188.10.1016/j.compositesb.2016.01.053 Search in Google Scholar

4. Rozylo P. Experimental-numerical study into the stability and failure of compressed thin-walled composite profiles using progressive failure analysis and cohesive zone model. Composite Structures, 2021;257:113303.10.1016/j.compstruct.2020.113303 Search in Google Scholar

5. Debski H, Rozylo P, Teter A. Buckling and limit states of thin-walled composite columns under eccentric load. Thin-Walled Structures, 2020;149:106627.10.1016/j.tws.2020.106627 Search in Google Scholar

6. Debski H, Rozylo P, Wysmulski P. Stability and load-carrying capacity of short open-section composite columns under eccentric compression loading. Composite Structures, 2020;252:112716.10.1016/j.compstruct.2020.112716 Search in Google Scholar

7. Rozylo P, Debski H. Stability and load-carrying capacity of short composite Z-profiles under eccentric compression. Thin-Walled Structures, 2020;157:107019.10.1016/j.tws.2020.107019 Search in Google Scholar

8. Debski H, Samborski S, Rozylo P, Wysmulski P. Stability and Load-Carrying Capacity of Thin-Walled FRP Composite Z-Profiles under Eccentric Compression. Materials, 2020;13:2956.10.3390/ma13132956737245532630628 Search in Google Scholar

9. Rozylo P, Debski H. Effect of eccentric loading on the stability and load-carrying capacity of thin-walled composite profiles with top-hat section. Composite Structures, 2020;245:112388.10.1016/j.compstruct.2020.112388 Search in Google Scholar

10. Gliszczynski A, Czechowski L. Collapse of channel section composite profile subjected to bending, Part I: Numerical investigations. Compos Struct, 2017;178:383–394.10.1016/j.compstruct.2017.07.033 Search in Google Scholar

11. Jakubczak P, Gliszczynski A. Bienias J, Majerski K. Kubiak T. Collapse of channel section composite profile subjected to bending Part II: Failure analysis. Compos Struct, 2017;179:1–20.10.1016/j.compstruct.2017.07.052 Search in Google Scholar

12. Kazmierczyk F, Urbaniak M, Swiniarski J, Kubiak T. Influence of boundary conditions on the behaviour of composite channel section subjected to pure bending – Experimental study. Compos Struct, 2022;279:114727.10.1016/j.compstruct.2021.114727 Search in Google Scholar

13. Gliszczynski A, Kubiak T. Load-carrying capacity of thin-walled composite beams subjected to pure bending. Thin-Walled Struct, 2017;115:76–85.10.1016/j.tws.2017.02.009 Search in Google Scholar

14. Czechowski L, Gliszczynski A, Bienias J, Jakubczak P, Majerski K. Composites Part B, 2017;111:112-123. Search in Google Scholar

15. Banat D, Mania RJ. Failure assessment of thin-walled FML profiles during buckling and postbuckling response. Compos Part B Eng 2017;112:278-289.10.1016/j.compositesb.2017.01.001 Search in Google Scholar

16. Madukauwa-David ID, Drissi-Habti M. Numerical simulation of the mechanical behavior of a large smart composite platform under static loads. Composites Part B Eng 2016;88:19-25.10.1016/j.compositesb.2015.10.041 Search in Google Scholar

17. Feo L, Latour M, Penna R, Rizzano G. Pilot study on the experimental behavior of GFRP-steel slip-critical connections. Composites Part B Eng 2017;115:209-222.10.1016/j.compositesb.2016.10.007 Search in Google Scholar

18. Chroscielewski J, Miskiewicz M, Pyrzowski Ł, Sobczyk B, Wilde K. A novel sandwich footbridge - Practical application of laminated composites in bridge design and in situ measurements of static response. Composites Part B Eng 2017;126:153-161.10.1016/j.compositesb.2017.06.009 Search in Google Scholar

19. Rozylo P. Stability and failure of compressed thin-walled composite columns using experimental tests and advanced numerical damage models. Int J Numer Methods Eng. 2021;122:5076-5099.10.1002/nme.6757 Search in Google Scholar

20. Rozylo P, Wysmulski P. Failure analysis of thin-walled composite profiles subjected to axial compression using progressive failure analysis (PFA) and cohesive zone model (CZM). Composite Structures, 2021;262:113597.10.1016/j.compstruct.2021.113597 Search in Google Scholar

21. Rozylo P, Debski H, Wysmulski P, Falkowicz K. Numerical and experimental failure analysis of thin-walled composite columns with a top-hat cross section under axial compression. Composite Structures 2018;204:207-216.10.1016/j.compstruct.2018.07.068 Search in Google Scholar

22. Paszkiewicz M, Kubiak T. Selected problems concerning determination of the buckling load of channel section beams and columns. Thin-Walled Structures 2015;93:112-121.10.1016/j.tws.2015.03.009 Search in Google Scholar

23. Ascione F. Influence of initial geometric imperfections in the lateral buckling problem of thin walled pultruded GFRP I-profiles. Composite Structures 2014;112:85–99.10.1016/j.compstruct.2014.02.002 Search in Google Scholar

24. Sohn MS, Hu XZ, Kim JK, Walker L. Impact damage characterisation of carbon fibre/epoxy composites with multi-layer reinforcement. Composites Part B: Engineering 2000;31:681-691.10.1016/S1359-8368(00)00028-7 Search in Google Scholar

25. Batra RC, Gopinath G, Zheng JQ. Damage and failure in low energy impact of fiber-reinforced polymeric composite laminates. Composite Structures 2012;94:540-547.10.1016/j.compstruct.2011.08.015 Search in Google Scholar

26. Rozylo P, Ferdynus M, Debski H, Samborski S. Progressive Failure Analysis of Thin-Walled Composite Structures Verified Experimentally. Materials, 2020;13:1138.10.3390/ma13051138708499232143395 Search in Google Scholar

27. Debski H, Rozylo P, Gliszczynski A, Kubiak T. Numerical models for buckling, postbuckling and failure analysis of predamaged thin-walled composite struts subjected to uniform compression. Thin-Walled Structures, 2019;139:53-65.10.1016/j.tws.2019.02.030 Search in Google Scholar

28. Reddy JN, Pandey AK. A first-ply failure analysis of composite laminates. Comput Struct, 1987;25:371–393.10.1016/0045-7949(87)90130-1 Search in Google Scholar

29. Kubiak T, Samborski S, Teter A. Experimental investigation of failure process in compressed channel-section GFRP laminate columns assisted with the acoustic emission method. Compos Struct, 2015; 133:921-929.10.1016/j.compstruct.2015.08.023 Search in Google Scholar

30. Hashin Z, Rotem A. A fatigue failure criterion for fibre reinforced materials. J. Compos. Mater, 1973;7:448–464. Search in Google Scholar

31. Camanho PP, Maimí P, Dávila CG. Prediction of size effects in notched laminates using continuum damage mechanics. Compos. Sci. Technol, 2017;67:2715–2727. Search in Google Scholar

32. Camanho PP, Matthews FL. A progressive damage model for mechanically fastened joints in composite laminates. J. Comp. Mater, 1999;33:2248–2280. Search in Google Scholar

33. Barbero EJ, Cosso FA. Determination of material parameters for discrete damage mechanics analysis of carbon epoxy laminates. Compos. Part B Eng, 2014;56:638–646. Search in Google Scholar

34. Lemaitre J, Plumtree A. Application of damage concepts to predict creep fatigue failures. J. Eng. Mater. Technol, 1979;101:284–292. Search in Google Scholar

35. Ribeiro ML, Vandepitte D, Tita V. Damage model and progressive failure analyses for filament wound composite laminates. Appl. Compos. Mater, 2013;20:975–992. Search in Google Scholar

36. Kachanov LM. Time of the rupture process under creep conditions, Izv. AN SSSR. Otd. Tekh. Nauk, 1958;8:26–31. Search in Google Scholar

37. Matzenmiller A, Lubliner J, Taylor LR. A constitutive model for anisotropic damage in fiber composites. Mech. Mater, 1995;20:125–152. Search in Google Scholar

38. Lapczyk I, Hurtado JA. Progressive damage modeling in fiber-reinforced materials. Compos. Part A Appl. Sci. Manuf, 2007;38: 2333–2341.10.1016/j.compositesa.2007.01.017 Search in Google Scholar

39. Bisagni C, Di Pietro, G, Fraschini L, Terletti D. Progressive crushing of fiber reinforced composite structural components of a Formula One racing car. Compos. Struct, 2005;68:491–503. Search in Google Scholar

40. Li W, Cai H, Li C, Wang K, Fang L. Progressive failure of laminated composites with a hole under compressive loading based on micro-mechanics. Adv. Compos. Mater, 2014;23:477–490. Search in Google Scholar

41. Benzeggagh ML, Kenane M. Measurement of Mixed-Mode Delamination Fracture Toughness of Unidirectional Glass/Epoxy Composites with Mixed-Mode Bending Apparatus. Composites Science and Technology, 1996;56:439–449.10.1016/0266-3538(96)00005-X Search in Google Scholar

42. Dugdale DS. Yielding of steel sheets containing slit, Journal of the Mechanics and Physics of Solids, 1960;8(2):100-104. Search in Google Scholar

43. Barenblatt GI. The mathematical theory of equilibrium cracks in brittle fracture. Advances in Applied Mechanics, 1962;7:55-129.10.1016/S0065-2156(08)70121-2 Search in Google Scholar

44. Turon A, Camanho PP, Costa J, Dávila CG. A damage model for the simulation of delamination in advanced composites under variable-mode loading, Mechanics of Materials, 2006;38(11):1072-1089. Search in Google Scholar

45. Camanho PP, Davila CG, de Moura MF. Numerical simulation of mixed-mode progressive delamination in the composite materials, Journal of Composite Materials, 2003;37(16):1415-1438. Search in Google Scholar

46. Hu H, Niu F, Dou T, Zhang H. Rehabilitation Effect Evaluation of CFRP-Lined Prestressed Concrete Cylinder Pipe under Combined Loads Using Numerical Simulation. Mathematical Problems in Engineering, 2018;2018:3268962.10.1155/2018/3268962 Search in Google Scholar

47. Borg R, Nilsson L, Simonsson K. Simulating DCB, ENF and MMB experiments using shell elements and a cohesive zone model, Composites Science and Technology, 2004;64:269-278. Search in Google Scholar

48. Zhao L, Gong Y, Zhang J, Chen Y, Fei B. Simulation of delamination growth in multidirectional laminates under mode I and mixed mode I/II loadings using cohesive elements, Composite Structures, 2014; 116:509-522. Search in Google Scholar

49. Rozylo P. Failure analysis of thin-walled composite structures using independent advanced damage models. Composite Structures, 2021;262:113598.10.1016/j.compstruct.2021.113598 Search in Google Scholar

50. Li ZM, Qiao P. Buckling and postbuckling behavior of shear deformable anisotropic laminated beams with initial geometric imperfections subjected to axial compression. Engineering Structures, 2015;85:277–292.10.1016/j.engstruct.2014.12.028 Search in Google Scholar

51. Bouhala L, Makradi A, Belouettar S, Younes A, Natarajan S. An XFEM/CZM based inverse method for identification of composite failure parameters. Comput. Struct, 2015;153:91-97.10.1016/j.compstruc.2015.02.035 Search in Google Scholar

52. Paneretti E, Fanteria D, Danzi F. Delaminations growth in compression after impact test simulations: Influence of cohesive elements parameters on numerical results. Compos. Struct, 2016;137:140-147. Search in Google Scholar

53. Moes N, Dolbow J, Belytschko T. A finite element method for crack growth without remeshing. Int J Numer Methods Eng, 1999;46(1):131–50.10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J Search in Google Scholar

54. Moës N, Belytschko T. Extended finite element method for cohesive crack growth. Eng Fracture Mech, 2002;69(7):813–33.10.1016/S0013-7944(01)00128-X Search in Google Scholar

55. Dolbow J, Moës N, Belytschko T. An extended finite element method for modeling crack growth with frictional contact. Comput Methods Appl Mech Eng, 2001;190(51-52):6825–46.10.1016/S0045-7825(01)00260-2 Search in Google Scholar

56. Melenk J, Babuska I. The partition of unity ˙nite element method: Basic theory and applications. computer methods. Appl. Mech Eng, 1996;39:289–314. Search in Google Scholar

57. Zienkiewicz OC, Taylor RL. Finite Element Method—Solid Mechanics, 5th ed.; Elsevier: Barcelona, Spain, 2000. Search in Google Scholar

58. Parlapalli MR, Soh KC, Shu DW, Ma G. Experimental investigation of delamination buckling of stitched composite laminates. Composites: Part A, 2007;38:2024–2033.10.1016/j.compositesa.2007.05.001 Search in Google Scholar

59. Turvey GJ, Zhang Y. A computational and experimental analysis of the buckling, postbuckling and initial failure of pultruded GRP columns. Composite Structures, 2006;84:1527–1537.10.1016/j.compstruc.2006.01.028 Search in Google Scholar

60. Bohse J. et al. Damage analysis of Polymer Matrix Composites by Acoustic Emission Testing. DGZfP-Proceedings BB 90-CD:339-348. Search in Google Scholar

61. Riccio A, Saputo S, Sellitto A, Di Caprio F, Di Palma L. A numerical-experimental assessment on a composite fuselage barrel vertical drop test: Induced damage onset and evolution. Composite Structures, 2020;248:112519.10.1016/j.compstruct.2020.112519 Search in Google Scholar

62. Gliszczynski A, Kubiak T. Progressive failure analysis of thin-walled composite columns subjected to uniaxial compression. Composite Structures, 2017;169:52-61.10.1016/j.compstruct.2016.10.029 Search in Google Scholar

63. Aveiga D, Ribeiro ML. A Delamination Propagation Model for Fiber Reinforced Laminated Composite Materials. Mathematical Problems in Engineering, 2018;2018:1861268.10.1155/2018/1861268 Search in Google Scholar

64. Rozylo P, Debski H, Falkowicz K, Wysmulski P, Pasnik J, Kral J. Experimental-Numerical Failure Analysis of Thin-Walled Composite Columns Using Advanced Damage Models. Materials, 2021;14(6): 1506.10.3390/ma14061506 Search in Google Scholar

65. Banat D, Mania RJ, Degenhardt R. Stress state failure analysis of thin-walled GLARE composite members subjected to axial loading in the post-buckling range. Composite Structures, 2022;289:115468.10.1016/j.compstruct.2022.115468 Search in Google Scholar

66. Banat D, Mania RJ. Damage analysis of thin-walled GLARE members under axial compression – Numerical and experiment investigations. Compos. Struct, 2020;241:112102. Search in Google Scholar

67. Debski H. Experimental investigation of post-buckling behavior of composite column with top-hat cross-section. Eksploat. Niezawodn, 2013;15:106–110. Search in Google Scholar

68. Debski H. Badania numeryczne i doświadczalne stateczności i nośności kompozytowych słupów cienkościennych poddanych ściskaniu. Zeszyty naukowe nr 1161, Wydawnictwo Politechniki Łódzkiej, ISSN 0137-4834, Łódź, 2013. Search in Google Scholar

69. Rozylo P. Comparison of Failure for Thin-Walled Composite Columns. Materials, 2022;15:167.10.3390/ma15010167 Search in Google Scholar

70. Debski H, Rozylo P, Wysmulski P, Falkowicz K, Ferdynus M. Experimental study on the effect of eccentric compressive load on the stability and load-carrying capacity of thin-walled composite profiles. Composites Part B, 2021;226:109346.10.1016/j.compositesb.2021.109346 Search in Google Scholar

71. Li Z, Cen S, Wu CJ, Shang Y, Li CF. High-performance geometric nonlinear analysis with the unsymmetric 4-node, 8-DOF plane element US-ATFQ4. Int J Numer Methods Eng, 2018;114:931–954.10.1002/nme.5771 Search in Google Scholar

72. Camanho PP, Davila CG. Mixed-mode decohesion finite elements for the simulation of delamination in composite materials. NASA/TM-2002–211737, 2002:1–37. Search in Google Scholar

73. Dassault Systemes Simulia Corp. Abaqus 2020 Documentation. Providence, RI, USA, 2020. Search in Google Scholar

74. Belytschko T, Black T. Elastic Crack Growth in Finite Elements with Minimal Remeshing. International Journal for Numerical Methods in Engineering, 1999;45:601–620.10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S Search in Google Scholar

75. Melenk J, Babuska I. The Partition of Unity Finite Element Method: Basic Theory and Applications. Computer Methods in Applied Mechanics and Engineering, 1996;39:289–314.10.1016/S0045-7825(96)01087-0 Search in Google Scholar

76. Yu Z, Zhang J, Shen J, Chen H. Simulation of crack propagation behavior of nuclear graphite by using XFEM, VCCT and CZM methods. Nuclear Materials and Energy, 2021;29:101063.10.1016/j.nme.2021.101063 Search in Google Scholar

77. Heidari-Rarani M, Sayedain M. Finite element modeling strategies for 2D and 3D delamination propagation in composite DCB specimens using VCCT, CZM and XFEM approaches. Composites Part C: Open Access, 2020;2:100014. Search in Google Scholar

78. Kolanu NR, Raju G, Ramji M. A unified numerical approach for the simulation of intra and inter laminar damage evolution in stiffened CFRP panels under compression. Composites Part B, 2020;190: 107931.10.1016/j.compositesb.2020.107931 Search in Google Scholar