Accesso libero

Research of Dynamic Processes in an Anvil During a Collision with a Sample

INFORMAZIONI SU QUESTO ARTICOLO

Cita

1. Taylor G. The use of flat-ended projectiles for determining dynamic yield stress. I. Theoretical considerations. Proc. R. Soc. London Ser. A. 1948;194:289–299.10.1098/rspa.1948.0081 Search in Google Scholar

2. Whiffin AC. The use of flat-ended projectiles for determining dynamic yield stress. II. Tests on various metallic materials. Proc. R. Soc. London, Ser. A. 1948;194:300–322.10.1098/rspa.1948.0082 Search in Google Scholar

3. Carrington WE, Gayler MLV. The use of flat-ended projectiles for determining dynamic yield stress. III. Changes in microstructure caused by deformation under impact at high-striking velocities. Proc. R. Soc. London, Ser. A. 1948;194:323–331. Search in Google Scholar

4. Włodarczyk E, Michałowski M. Penetration of metallic half-space by a rigid bullet. Problemy Techniki Uzbrojenia. 2002;31(82):93–102. Search in Google Scholar

5. Włodarczyk E, Sarzyński M. Analysis of dynamic parameters in a metal cylindrical rod striking a rigid target. Journal of Theoretical and Applied Mechanics. 2013; 51(4):847-857. Search in Google Scholar

6. Włodarczyk E, Sarzynski M. Strain energy method for determining dynamic yield stress in Taylor’s test. Engineering Transactions. 2017; 65(3):499-511. Search in Google Scholar

7. Świerczewski M, Klasztorny M, Dziewulski P, Gotowicki P. Numerical modelling, simulation and validation of the SPS and PS systems under 6 kg TNT blast shock wave. Acta Mechanica et Automatica. 2012;6(3):77-87. Search in Google Scholar

8. Kil’chevskii NA. Dynamic Contact Compression of Two Bodies. Impact [in Russian]. Kiev: Naukova Dumka; 1976. Search in Google Scholar

9. Awrejcewicz J. Pyryev Yu. Nonsmooth Dynamics of Contacting Thermoelastic Bodies. New York: Springer Varlag; 2009. Search in Google Scholar

10. Saint-Venant BD. Sur le choc longitudinal de deux barres élastiques. J. de Math. (Liouville) Sér. 2. 1867;12:237-276. http://portail.mathdoc.fr/JMPA/afficher_notice.php?id=JMPA_1867_2_12_A16_0 Search in Google Scholar

11. Hertz H. Über die Berührung fester elastischer Körper [in German]. Journal für die reine und angewandte Mathematik. 1881;92:156-171. Search in Google Scholar

12. Boussinesq VJ. Application des potentiels a l’étude de l’équilibre et du movement des solides élastiques. Paris: Gauthier-Villars, Imprimeur-Libraire; 1885. Search in Google Scholar

13. Johnson KL. Contact mechanics. Cambridge: Cambridge University Press; 1985. Search in Google Scholar

14. Sears JE. On the longitudinal impact of metal rods with rounded ends. Proc. Cambridge Phil. Soc. 1908;14:257-286. Search in Google Scholar

15. Hunter SC. Energy absorbed by elastic waves during impact. J. Mech. Phys. Solids. 1957;5:162-171.10.1016/0022-5096(57)90002-9 Search in Google Scholar

16. Andersson M., Nilsson F. A perturbation method used for static contact and low velocity impact. Int. J. Impact Eng. 1995;16:759-775. Search in Google Scholar

17. Timoshenko SP, Young DH, Weaver WJr. Vibration Problems in Engineering. New York: Wiley. 1974. Search in Google Scholar

18. Popov SN. Impact of a rigid ball onto the surface of an elastic half-space. Soviet Applied Mechanics. 1990;26(3):250-256.10.1007/BF00937211 Search in Google Scholar

19. Kubenko VD. Impact of blunted bodies on a liquid or elastic medium. International Applied Mechanics. 2004;40(11):1185-1225.10.1007/s10778-005-0031-6 Search in Google Scholar

20. Argatov II. Asymptotic modeling of the impact of a spherical indenter on an elastic half-space. International Journal of Solids and Structures. 2008;45:5035-5048.10.1016/j.ijsolstr.2008.05.003 Search in Google Scholar

21. Argatov II. Fadin YA. Excitation of the Elastic Half-Space Surface by Normal Rebounding Impact of an Indenter. Journal of Friction and Wear. 2009;30(1):1-6.10.3103/S1068366609010012 Search in Google Scholar

22. Argatov I, Jokinen M. Longitudinal elastic stress impulse induced by impact through a spring-dashpot system: Optimization and inverse. International Journal of Solids and Structures. 2013;50:3960-3966.10.1016/j.ijsolstr.2013.08.005 Search in Google Scholar

23. Goldsmith W. Impact: The Theory and Physical Behavior of Colliding Solids. London: Edward Arnold Ltd.; 1960. Search in Google Scholar

24. Yang Y, Zeng Q, Wan L. Contact response analysis of vertical impact between elastic sphere and elastic half space. Shock Vib. 2018; vol. 2018: 1802174.10.1155/2018/1802174 Search in Google Scholar

25. Ruta P, Szydło A. Drop-weight test based identification of elastic half-space model parameters. Journal of Sound and Vibration. 2005;282:411-427.10.1016/j.jsv.2004.02.052 Search in Google Scholar

26. Qu A, James DL. On the impact of ground sound. Proceedings of the 22nd International Conference on Digital Audio Effects (DAFx-19), Birmingham, UK, September 2–6, 2019.2019:1-8. Search in Google Scholar

27. Lamb H. On the propagation of tremors over the surface of an elastic solid. Philos. Trans. R. Soc. London. Ser. A. 1904;203:1-42.10.1098/rsta.1904.0013 Search in Google Scholar

28. Mooney HM. Some numerical solutions for Lamb’s problem. Bulletin of the Seismological Society of America. 1974; 64 (2):473-491.10.1785/BSSA0640020473 Search in Google Scholar

29. Cagniard L. Rêflextion et rêfraction des ondes sêismiques progressives, Gauthier-Villars. 1939. Search in Google Scholar

30. de Hoop AT. A modification of Cagniard’s method for solving seismic pulse problems. Appl. Sci. Res. 1960; B8:349-356.10.1007/BF02920068 Search in Google Scholar

31. Sánchez-Sesma FJ, Iturrarán-Viveros U, Kausel E. Garvin’s generalized problem revisited. Soil Dyn. Earthq. Eng. 2013;47:4-15. Search in Google Scholar

32. Pak RYS, Bai X. Analytic resolution of time-domain half-space Green’s functions for internal loads by a displacement potential-Laplace-Hankel-Cagniard transform method. Proc. R. Soc. A Math. Phys. Eng. Sci. 2020;476: 20190610. Search in Google Scholar

33. Pekeris CL. The seismic surface pulse. Proc. Natl. Acad. Sci. 1955; 41(7):469-480.10.1073/pnas.41.7.46952811816589699 Search in Google Scholar

34. Kausel E. Fundamental Solutions in Elastodynamics: a Compendium. Cambridge University Press; 2006.10.1017/CBO9780511546112 Search in Google Scholar

35. Kausel E. Lamb’s problem at its simplest. Proceedings of the Royal Society A: Mathematical. Physical and Engineering Sciences. 2012;469:20120462. Search in Google Scholar

36. Emami M, Eskandari-Ghadi M. Lamb’s problem: a brief history. Mathematics and Mechanics of Solids. 2019;25(3): 108128651988367 Search in Google Scholar

37. Achenbach JD. Wave Propagation in Elastic Solids. New York: Elsevier. 1973. Search in Google Scholar

38. Nowacki W. Thermoelasticity. 2nd edn., PWN-Polish Scientific Publishers. 1986. Search in Google Scholar

39. Smetankina NV, Shupikov AN, Sotrikhin SYu, Yareshchenko VG. A Noncanonically Shape Laminated Plate Subjected to Impact Loading: Theory and Experiment. J. Appl. Mech. 2008;75(5): 051004. Search in Google Scholar

40. Awrejcewicz J, Pyryev Yu. The Saint-Venant principle and an impact load acting on an elastic half-space. Journal of Sound and Vibration. 2003;264(1):245-251.10.1016/S0022-460X(02)01473-6 Search in Google Scholar

41. Panovko YaG. Introduction to the Theory of Mechanical Shock. Moscow: Nauka. 1977 [in Russian]. Search in Google Scholar

42. Kulczycki-Żyhajło R, Kołodziejczyk W, Rogowski G. Selected issues of theory of elasticity for layered bodies. Acta Mechanica et Automatica. 2009;3(3):32-38. Search in Google Scholar