Accesso libero

Influence of Imperfect Interface of Anisotropic Thermomagnetoelectroelastic Bimaterial Solids on Interaction of Thin Deformable Inclusions

INFORMAZIONI SU QUESTO ARTICOLO

Cita

1. Kaessmair S, Javili A, Steinmann P. Thermomechanics of solids with general imperfect coherent interfaces. Archive of Applied Mechanics. 2014;84: 1409-1426. https://doi.org/10.1007/s00419-014-0870-x Search in Google Scholar

2. Benvensite Y. A general interface model for a three-dimensional curved thin anisotropic interphace between two anisotropic media. Journal of the Mechanics and Physics of Solids. 2006;54: 708-734. https://doi.org/10.1016/j.jmps.2005.10.009 Search in Google Scholar

3. Pasternak I, Pasternak R, Sulym H. Boundary integral equations and Green’s functions for 2D thermoelectroelastic biomaterial. Engineering Analysis with Boundary Elements. 2014;48: 87-101. https://doi.org/10.1016/j.enganabound.2014.06.010 Search in Google Scholar

4. Pasternak I, Pasternak R, Sulym H. 2D boundary element analysis of defective thermoelectroelastic bimaterial with thermally imperfect but mechanically and electrically perfect interface. Engineering Analysis with Boundary Elements. 2015;61: 194-206. https://doi.org/10.1016/j.enganabound.2015.07.012 Search in Google Scholar

5. Muskhelishvili NI. Singular Integral Equations: Boundary Problems of Function Theory and Their Application to Mathematical Physics. First Edition. Mineola: Dover Publications; 2008. Search in Google Scholar

6. Hwu C. Anisotropic elastic plates. London: Springer; 2010.10.1007/978-1-4419-5915-7 Search in Google Scholar

7. Ting TC. Anisotropic elasticity: theory and applications. New York: Oxford University Press; 1996.10.1093/oso/9780195074475.001.0001 Search in Google Scholar

8. Pasternak I. Boundary integral equations and the boundary element method for fracture mechanics analysis in 2D anisotropic thermoelasticity. Engineering Analysis with Boundary Elements. 2012;36(12): 1931-41. https://doi.org/10.1016/j.enganabound.2012.07.007 Search in Google Scholar

9. Pasternak I. Coupled 2D electric and mechanical fields in piezoelectric solids containing cracks and thin inhomogeneities. Engineering Analysis with Boundary Elements. 2011;23: 678-90. https://doi.org/10.1016/j.enganabound.2010.12.001 Search in Google Scholar

10. Sulym GT. Bases of the Mathematical Theory of Thermoelastic Equilibrium of Deformable Solids with Thin Inclusions [inUkrainian]. Lviv: Dosl.-Vyd. Tsentr NTSh; 2007. Search in Google Scholar

11. Pan E, Amadei B. Boundary element analysis of fracture mechanics in anisotropic bimaterials. Engineering Analysis with Boundary Elements. 1999;23: 683-91. https://doi.org/10.1016/S0955-7997(99)00018-1 Search in Google Scholar

12. Wang X, Pan E. Thermal Green’s functions in plane anisotropic bimaterials with spring-type and Kapitza-type imperfect interface. Acta Mechanica et Automatica. 2010;209: 115-128. https://doi.org/10.1007/s00707-009-0146-7 Search in Google Scholar

13. Sladek J, Sladek V, Wuensche M, Zhang, Ch. Analysis of an interface crack between two dissimilar piezoelectric solids. Engineering Fracture Mechanics. 2012;89: 114-27. https://doi.org/10.1016/j.engfracmech.2012.04.032 Search in Google Scholar

14. Wang TC, Han XL. Fracture mechanics of piezoelectric materials. International journal fracture mechanics. 1999;98: 15-35. https://doi.org/10.1023/A:1018656606554 Search in Google Scholar

15. Qin QH. Green’s function and boundary elements of multifield materials. Oxford: Elsevier Science; 2007. Search in Google Scholar

16. Yang J. Special topics in the theory of piezoelectricity. London: Springer; 2009.10.1007/978-0-387-89498-0 Search in Google Scholar

17. Pasternak I, Pasternak R, Sulym H. A comprehensive study on the 2D boundary element method for anisotropic thermoelectroelastic solids with cracks and thin inhomogeneities, Engineering Analysis with Boundary Elements. 2013;37(2): 419-33. https://doi.org/10.1016/j.enganabound.2012.11.002 Search in Google Scholar

18. Dunn ML. Micromechanics of coupled electroelastic composites: Effective thermal expansion and pyroelectric coefficients. Journal of Applied Physics. 1993;73: 5131-40. https://doi.org/10.1063/1.353787 Search in Google Scholar

19. Berlincourt D, Jaffe H, Shiozawa LR. Electroelastic properties of the sulfides, selenides, and tellurides of zinc and cadmium. Physical Review. 1963;129: 1009-17. https://doi.org/10.1103/PhysRev.129.1009 Search in Google Scholar