INFORMAZIONI SU QUESTO ARTICOLO

Cita

1. Liu C, Xiang S, Lu C, Wu C, Du Z, Yang J. Dynamic and static error identification and separation method for three-axis CNC machine tools based on feature workpiece cutting. International Journal of Advanced Manufacturing Technology. 2020; 107(5–6): 2227-2238. https://doi.org/10.1007/s00170-020-05103-510.1007/s00170-020-05103-5 Search in Google Scholar

2. Martinov G M, Ljubimov A B, Martinova L I. From classic CNC systems to cloud-based technology and back. Robotics and Computer-Integrated Manufacturing. 2020; 63: 101927 https://doi.org/10.1016/j.rcim.2019.10192710.1016/j.rcim.2019.101927 Search in Google Scholar

3. Zhao W, Chen M, Xi W, Xi X, Zhao F, Zhang Y. Reconstructing CNC platform for EDM machines towards smart manufacturing. Procedia CIRP. 2020: 95: 161–177 https://doi.org/10.1016/j.procir.2020.03.13410.1016/j.procir.2020.03.134 Search in Google Scholar

4. Nurhadi H, Tarng Y S. Open-and closed-loop system of computer integrated desktop-scale CNC machine, IFAC Proceedings Volumes. 2010: 42(24):222–226. https://doi.org/10.3182/20091021-3-JP-2009.0004110.3182/20091021-3-JP-2009.00041 Search in Google Scholar

5. Andersen H V, Pitkänen K. Empowering educators by developing professional practice in digital fabrication and design thinking. International Journal of Child-Computer Interaction. 2019: 21: 1-16. https://doi.org/10.1016/j.ijcci.2019.03.00110.1016/j.ijcci.2019.03.001 Search in Google Scholar

6. Ropin H, Pfleger-Landthaler A. Irsa W A. FabLab as integrative part of a learning factory. Procedia Manufacturing. 2020;45: 355–360. https://doi.org/10.1016/j.promfg.2020.04.03310.1016/j.promfg.2020.04.033 Search in Google Scholar

7. Korkut I, Donertas M A. The influence of feed rate and cutting speed on the cutting forces, surface roughness and tool-chip contact length during face milling. Materials and Design. 2007; 28(1): 308-312. https://doi.org/10.1016/j.matdes.2005.06.00210.1016/j.matdes.2005.06.002 Search in Google Scholar

8. Zmarzły P. Technological heredity of the turning process, Tehnicki Vjesnik. 2020; 27(4): 1194–1203.10.17559/TV-20190425150325 Search in Google Scholar

9. Mori M, Yamazaki K, Fujishima M, Liu J, Furukawa N. A study on development of an open servo system for intelligent control of a CNC machine tool. CIRP Annals - Manufacturing Technology. 2001; 50(1): 247–250. http://dx.doi.org/10.1016/S0007-8506(07)62115-510.1016/S0007-8506(07)62115-5 Search in Google Scholar

10. Zhou Q. Application of PLC in the CNC machine tool control system. Applied Mechanics and Materials. 2012; 182-183: 902–905. https://doi.org/10.4028/www.scientific.net/AMM.182-183.90210.4028/www.scientific.net/AMM.182-183.902 Search in Google Scholar

11. Xu HH, Dai C. Research on precision detection and error compensation technology for 3-axis CNC milling machine, Applied Mechanics and Materials. 2014: 455; 505–510. https://doi.org/10.4028/www.scientific.net/AMM.455.50510.4028/www.scientific.net/AMM.455.505 Search in Google Scholar

12. Ibaraki S, Oyama C, Otsubo H. Construction of an error map of rotary axes on a five-axis machining center by static R-test. International Journal of Machine Tools and Manufacture. 2011; 51(3): 190–200. http://dx.doi.org/10.1016/j.ijmachtools.2010.11.01110.1016/j.ijmachtools.2010.11.011 Search in Google Scholar

13. ISO 230-1. Test code for machine tools — Part 1: Geometric accuracy of machines operating under no-load or quasi-static conditions; 2012. Search in Google Scholar

14. Blackshaw D M S. Machine tool accuracy and repeatability-a new approach with the revision of ISO 230-2. Transactions on Engineering Sciences. 1997; 16: 91-100. https://doi.org/10.2495/LAMDAMAP970081 Search in Google Scholar

15. ISO 10791-4. Test conditions for machining centres-Part 4: Accuracy and repeatability of positioning of linear and rotary axes. 1998 Search in Google Scholar

16. ISO 10791-6:2014. Test conditions for machining centres-Part 6: Accuracy of speeds and interpolations. 2014 Search in Google Scholar

17. Begović E, Plančić I, Ekinović S, Ekinov E. Laser Interferometry-Measurement and Calibration Method for Machine Tools, Proc 3rd Conference “MAINTENANCE 2014“, 2014; 19–28. Search in Google Scholar

18. Zhang Y, Chu X, Yang S. Research of error detection and compensation of CNC machine tools based on laser interferometer, Proc in 2nd International Conference on Machinery, Materials Engineering, Chemical Engineering and Biotechnology, 2016; 285–289.10.2991/mmeceb-15.2016.56 Search in Google Scholar

19. Lasiyah, S., Development of accuracy measurement for mini Milling CNC with Helium-Neon Laser (in Indonesian). Final Project, Department of Mecahnical Engineering, Vocational College, Gadjah Mada University. 2019 Search in Google Scholar

20. Winarno A, Lasiyah S, Prayoga B T, Hendaryanto I A, Sukidjo F X. Development of accuracy evaluation method for open loop educational CNC Milling Machine. Jurnal Rekayasa Mesin. 2021; 12(1): 217-225. https://doi.org/10.21776/ub.jrm.2021.012.01.2310.21776/ub.jrm.2021.012.01.23 Search in Google Scholar

21. Stone J A, Decker J E, Gill P, Juncar P, Lewis A, Rovera G D, Viliesid M. Advice from the CCL on the use of unstabilized lasers as standards of wavelength: The helium-neon laser at 633 nm, Metrologia. 2009; 46(1): 11–18. https://doi.org/10.1088/0026-1394/46/1/00210.1088/0026-1394/46/1/002 Search in Google Scholar

22. Haitjema H. Calibration of displacement laser interferometer systems for industrial metrology, Sensors. 2019;19(19):1-21. https://dx.doi.org/10.3390%2Fs1919410010.3390/s19194100680627031546748 Search in Google Scholar

23. Ciddor P E, Hill R J. Refractive index of air 2 Group index, Applied Optics. 1999; 38(9): 1663-1667. https://doi.org/10.1364/AO.38.00166310.1364/AO.38.001663 Search in Google Scholar

24. Dobosz M, Iwasinska-Kowalska O. A new method of non-contact gauge block calibration using a fringe-counting technique: I. Theoretical basis, Optics and Laser Technology, 2010; 42(1): 141–148. https://doi.org/10.1016/j.optlastec.2009.05.01210.1016/j.optlastec.2009.05.012 Search in Google Scholar

25. Iwasinska-Kowalska O, Dobosz M. A new method of noncontact gauge block calibration using the fringe counting technique: II. Experimental verification, Optics and Laser Technology, 2010;42(1):149–155. https://doi.org/10.1016/j.optlastec.2009.05.01110.1016/j.optlastec.2009.05.011 Search in Google Scholar

26. Winarno A, Takahashi S, Matsumoto H, Takamasu K. A new measurement method to simultaneously determine group refractive index and thickness of a sample using low-coherence tandem interferometry. Precision Engineering, 2019; 55:254–259. https://doi.org/10.1016/j.precisioneng.2018.09.01310.1016/j.precisioneng.2018.09.013 Search in Google Scholar

27. Ni Y, Zhou H, Shao C, Li J. Research on the Error Averaging Effect in A Rolling Guide Pair. Chinese Journal of Mechanical Engineering (English Edition). 2019; 32(72). https://doi.org/10.1186/s10033-019-0386-y10.1186/s10033-019-0386-y Search in Google Scholar