Accesso libero

Design of Decoupled Pi Controllers for Two-Input Two-Output Networked Control Systems with Intrinsic and Network-Induced Time Delays

INFORMAZIONI SU QUESTO ARTICOLO

Cita

1. Ajayi T., Oboh I. (2012), Determination Of Control Pairing for Higher Order Multi-Variable Systems by the Use of Multiple Ratios. Int, J, Eng&ScientificRes, 3(3),1–5. Search in Google Scholar

2. Astrom K.J., Johansson K.H., Wang, Q.G. (2002), Design of Decoupled PI Controllers for Two-By-Two Systems. In IEE Proceedings-Control Theory and Applications, 149, 74–81.10.1049/ip-cta:20020087 Search in Google Scholar

3. Barker L.K. (1979), Mikhailov Stability Criterion for Time-Delayed Systems. Washington, DC.USA: NASA. Search in Google Scholar

4. Barrero F., Guevara J., Vargas E., Toral S., Vargas, M. (2014), Networked Transducers in Intelligent Transportation Systems Based on The IEEE 1451 Standard. Computer Standards Interfaces, 36(2), 300–311. doi:10.1016/j.csi.2012.05.004.10.1016/j.csi.2012.05.004 Search in Google Scholar

5. Baruah G., Majhi S., Mahanta C. (2018), Auto-Tuning of PI Controllers for TITO Processes with Experimental Validation. International Journal of Automation and Computing, 16. doi:10.1007/s11633-018-1140-0.10.1007/s11633-018-1140-0 Search in Google Scholar

6. Chao G.-L., Han K.W. (1998), Robust Stability Analysis of Time-Delay Systems Using Parameter-Plane and Parameter-Space Methods. Journal of the Franklin Institute, 335(7), 1249–1262.10.1016/S0016-0032(97)00070-7 Search in Google Scholar

7. de Aguiar A.P.V., Barros P. (2020), Evaluation and Redesign of The Inverted Decoupler : Open and Closed-Loop Approaches. Int. J. Control Autom.Syst.,18, 1435–1444. doi:0.1007/s12555-019-0371-3.10.1007/s12555-019-0371-3 Search in Google Scholar

8. Elahi A., Alfi A. (2017), Finite-Time H Control of Uncertain Networked Control Systems with Randomly Varying Communication Delays. ISA transactions, 69,65–88.10.1016/j.isatra.2017.04.00428477896 Search in Google Scholar

9. El-Farra N., Mhaskar P. (2008), Special issue on ‘Control of Networked and Complex Process Systems’. Comput. Chem. Eng., 32(9), 1963–1963.10.1016/j.compchemeng.2008.06.003 Search in Google Scholar

10. Hajare V., Khandekar A., Patre B. (2017), Discrete Sliding Mode Controller with Reaching Phase Elimination for TITO Systems. ISA Transactions, 66, 32–45. doi:10.1016/j.isatra.2016.10.010.10.1016/j.isatra.2016.10.01027816180 Search in Google Scholar

11. Hajare V., Patre B. (2015), Decentralized PID Controller for TITO Systems Using Characteristic Ratio Assignment with An Experimental Application. ISA transactions, 59, 385–97.10.1016/j.isatra.2015.10.00826521724 Search in Google Scholar

12. Hamdy M., Ramadan A., Abozalam B. (2018), Comparative Study Of Different Decoupling Schemes for TITO Binary Distillation Column via PI Controller. IEEE/CAA Journal of Automatica Sinica, 5(4), 869–877. doi:10.1109/JAS.2016.7510040.10.1109/JAS.2016.7510040 Search in Google Scholar

13. Hazarika S., Chidambaram M. (2014), Design of Proportional Integral Controllers with Decouplers for Unstable Two Input Two Output Systems. Industrial & Engineering Chemistry Research, 53(15), 6467–6476. doi:10.1021/ie403791q.10.1021/ie403791q Search in Google Scholar

14. Heris P.C., Saadatizadeh Z., Babaei E. (2019), A New Two Input-Single Output High Voltage Gain Converter with Ripple-Free Input Currents and Reduced Voltage on Semiconductors. IEEE Transactions on Power Electronics, 34(8), 7693–7702. doi:10.1109/TPEL.2018.2880493.10.1109/TPEL.2018.2880493 Search in Google Scholar

15. Hong L., Hongye S., Peng S., Zhan S., Zheng-Guang W. (2017), Estimation and Control for Networked Systems with Packet Losses without Acknowledgement. Springer, Cham. Switzerland. doi:10.1007/978-3-319-44212-9.10.1007/978-3-319-44212-9 Search in Google Scholar

16. Huang D., Nguang S. (2009), Dynamic Output Feed-Back Control for Uncertain Networked Control Systems with Random Network-Induced Delays. Int. J. Control Autom. Syst., 7(841), doi:10.1007/s12555-009-0517-9.10.1007/s12555-009-0517-9 Search in Google Scholar

17. Jeng J., Jian Y. (2017), Model-Free Simultaneous Design of Multiloop PID Controllers for TITO Interactive Processes with Time Delays. In 2017 56th Annual Conference of the Society of Instrument and Control Engineers of Japan (SICE), 1033–1038. doi:10.23919/SICE.2017.8105580.10.23919/SICE.2017.8105580 Search in Google Scholar

18. Jin Q., Zhu L., Wang Q., Jiang, B. (2016), PI Controller Design for A TITO System Based on Delay Compensated Structure and Direct Synthesis. Canadian Journal of Chemical Engineering, 94(9), 1740–1754. doi:10.1002/cjce.22551.10.1002/cjce.22551 Search in Google Scholar

19. Jin Y., Kwak D., Kim K.J., Kwak K.S. (2014), Cyclic Prefixed Single Carrier Transmission in Intra-Vehicle Wireless Sensor Networked Control Systems.In2014 IEEE 79th Vehicular Technology Conference (VTC Spring),1–5.10.1109/VTCSpring.2014.7023158 Search in Google Scholar

20. Khandekar A., Patre B. (2017), Decentralized Discrete Sliding Mode Controller for TITO Processes with Time Delay with Experimental Application. International Journal of Dynamics and Control, 5, 614—-628. doi:10.1007/s40435-015-0202-1.10.1007/s40435-015-0202-1 Search in Google Scholar

21. Koo J., Ha D., Park D., Roh H.J., Ryu S., Kim G.H., Baek K.H., Han C. (2017), Design of Optical Emission Spectroscopy Based Plasma Parameter Controller for Real-Time Advanced Equipment Control. Computers Chemical Engineering, 100, 38–47. doi:10.1016/j.compchemeng.2017.02.009.10.1016/j.compchemeng.2017.02.009 Search in Google Scholar

22. Li B., Wu J., Huang L. (2016), Improved H∞ Control for Networked Control Systems with Network-Induced Delay and Packet Dropout. J. Cent. South Univ., 23(5), 1215–1223. Search in Google Scholar

23. Li D.Z., He X., Song T.H., Jin, Q. (2019), Fractional Order IMC Controller Design for Two-Input-Two-Output Fractional Order System. International Journal of Control, Automation and Systems, 17. doi:10.1007/s12555-018-0129-3.10.1007/s12555-018-0129-3 Search in Google Scholar

24. Liu B., Liu Y. (2020), Mixed Event-Triggered Mechanism Modeling and Controlling for Networked Control Systems with Time-Varying Delays and Uncertainties. ASIAN JOURNAL OF CONTROL, 22(2), 803–817.10.1002/asjc.1951 Search in Google Scholar

25. Liu T., Zhang W., Gu, D. (2006), Analytical Design of Decoupling Internal Model Control (IMC) Scheme for Two-Input Two-Output (TITO) Processes with Time Delays. Industrial Engineering Chemistry Research, 45, 3149–3160. doi:10.1021/ie051129q.10.1021/ie051129q Search in Google Scholar

26. Liu Y.C. (2015), Robust Synchronization of Networked Lagrangian Systems and its Applications to Multi-robot Teleoperation. IET Control Theory & Applications, 9(1),129–139.10.1049/iet-cta.2013.0914 Search in Google Scholar

27. Maghade D. Patre B.M. (2013), Pole Placement by PID Controllers to Achieve Time Domain Specifications for TITO Systems. Transactions of the Institute of Measurement and Control, 36, 506–522. doi:10.1177/0142331213508803.10.1177/0142331213508803 Search in Google Scholar

28. Mahapatro S.R. Subudhi B. (2020), A Robust Decentralized PID Controller Based on Complementary Sensitivity Function for a Multivariable System. IEEE Transactions on Circuits and Systems II: Express Briefs, 67(10), 2024–2028. doi:10.1109/TCSII.2019.2943382.10.1109/TCSII.2019.2943382 Search in Google Scholar

29. Mikhailov A. (1938), Method of Harmonic Analysis in Control Theory. (in russian), A Vlomatiku 2., i Telemechllnika, 3, 27-81. Search in Google Scholar

30. Mohamed Vall O.M (2020a), Artificial Neural Network-Based Smith Predictor for Compensating Random Time Delays Acting in Networked Control Systems. International Journal of Control and Automation, 13(1), 36–44. Search in Google Scholar

31. Mohamed Vall O.M (2020b), PI Controller Design for Networked Control Systems with Random Time Delay. International Journal of Emerging Trends in Engineering Research,8(1),114–118. doi:10.30534/ijeter/2020/15812020.10.30534/ijeter/2020/15812020 Search in Google Scholar

32. Naik R.H., Kumar D., Sujatha P. (2020), Independent Controller Design for MIMO Processes Based on Extended Simplified Decoupler and Equivalent Transfer Function. Ain Shams EngineeringJournal, 11, 343–350.10.1016/j.asej.2017.10.011 Search in Google Scholar

33. Pang Z., Liu G., Zhou D., Sun D. (2016), Data-Based Predictive Control for Networked Nonlinear Systems with Network-Induced Delay and Packet Dropout. IEEE Transactions on Industrial Electronics, 63(2), 1249–1257.doi:10.1109/TIE.2015.2497206.10.1109/TIE.2015.2497206 Search in Google Scholar

34. Park P. (2015), Power Controlled Fair Access Protocol for Wireless Networked Control Systems. Wireless Networks, 21, 1499–1516.10.1007/s11276-014-0866-z Search in Google Scholar

35. Park P., Khadilkar H., Balakrishnan H., Tomlin C.J. (2014), High Confidence Networked Control for Next Generation Air Transportation Systems. IEEE Transactions on Automatic Control, 59(12), 3357–3372. doi:10.1109/TAC.2014.2352011.10.1109/TAC.2014.2352011 Search in Google Scholar

36. Qian G., Wei P., Ruan Z., Lu J.Q. (2017), A Low-Complexity Modulation Classification Algorithm for MIMO–OSTBC System. Circuits, Systems, and Signal Processing, 36. doi:10.1007/s00034-016-0428-y.10.1007/s00034-016-0428-y Search in Google Scholar

37. Sharma A., Padhy P. (2017), Design and Implementation of PID Controller for The Decoupled Two In-Put Two Output Control Process. In 2017 4th International Conference on Power, Control Embedded Systems (ICPCES), 1–6. doi:10.1109/ICPCES.2017.8117666.10.1109/ICPCES.2017.8117666 Search in Google Scholar

38. Siljak D. (1966), Generalization of the Parameter Plane Method. IEEE Transactions on Automatic Control, 11(1), 63–70. doi:10.1109/TAC.1966.1098230.10.1109/TAC.1966.1098230 Search in Google Scholar

39. Sun Y., El-Farra N. (2012), Resource Aware Quasi-Decentralized Control of Networked Process Systems over Wireless Sensor Networks. Chemical Engineering Science, 69(1),93–106. doi: https://doi.org/10.1016/j.ces.2011.10.010.10.1016/j.ces.2011.10.010 Search in Google Scholar

40. Tanaka Y., Ogata T., Imagawa, S. (2015), Decoupled Direct Tracking Control System Based on Use of A Virtual Track for Multilayer Disk with A Separate Guide Layer. Japan Society of Applied Physics, 54(9), 09MB03.10.7567/JJAP.54.09MB03 Search in Google Scholar

41. Ustoglu I., Eren Y., Soylemez, M. (2016), Stabilizing Constant Controllers for Two-Input, Two-Output Systems with Reducible and Irreducible Characteristic Equations. Transactions of the Institute of Measurement and Control, 39. doi:10.1177/0142331216645649.10.1177/0142331216645649 Search in Google Scholar

42. Vargas F., Silva E., Chen J. (2013), Stabilization of Two-Input Two-Output Systems over SNR-Constrained Channels. Automatica, 49, 3133–3140. doi:10.1016/j.automatica.2013.07.031.10.1016/j.automatica.2013.07.031 Search in Google Scholar

43. Wang Q., Huang B., Guo X. (2000), Auto-Tuning of TITO Decoupling Controllers from Step Tests. ISA Transactions, 39(4), 407–418.10.1016/S0019-0578(00)00028-8 Search in Google Scholar

44. Wang Y.J. (2011), Graphical Computation of Gain and Phase Margin Specifications-Oriented Robust PID Controllers for Uncertain Systems With Time-Varying Delay. Journal of Process Control, 21(4), 475–488.10.1016/j.jprocont.2011.02.003 Search in Google Scholar

45. Yao W., Jiang L., Wu J.W.Q., Cheng S. (2015), Wide-Area Damping Controller for Power System Inter-Area Oscillations: A Networked Predictive Control Approach. IEEE Transactions on Control Systems Technology, 23(1), 27–36. doi:10.1109/TCST.2014.2311852.10.1109/TCST.2014.2311852 Search in Google Scholar

46. Zhang W., Branicky M., Phillips S. (2001), Stability of Networked Control Systems. IEEE Control Systems Magazine, 21(1), 84–99. doi:10.1109/37.898794.10.1109/37.898794 Search in Google Scholar

47. Zhang X., Zheng Y., Lu G. (2006), Stochastic Stability of Networked Control Systems with Network-Induced Delay and Data Dropout. In Proceedings of the45th IEEE Conference on Decision and Control, 5006–5011. doi:10.1109/CDC.2006.376970.10.1109/CDC.2006.376970 Search in Google Scholar

48. Zhuang M., Atherton D.P. (1993), PID Controller Design for A TITO System. In 1993 American Control Conference, 3176–3177. doi:10.23919/ACC.1993.4793493.10.23919/ACC.1993.4793493 Search in Google Scholar