Accesso libero

Mathematical Modelling of Water-Based Fe3O4 Nanofluid Due to Rotating Disc and Comparison with Similarity Solution

INFORMAZIONI SU QUESTO ARTICOLO

Cita

1. Abo-Elkhair R.E., Bhatti M.M., Mekheimer K.S. (2021), Magnetic force effects on peristaltic transport of hybrid bio-nanofluid (Au–Cu nanoparticles) with moderate Reynolds number: An expanding horizon, Int. Commun. Heat Mass Transf., 123, 105228. Search in Google Scholar

2. Ali Z., Zeeshan A, Bhatti M.M., Hobiny A., Saeed T. (2021), Insight into the Dynamics of Oldroyd-B Fluid Over an Upper Horizontal Surface of a Paraboloid of Revolution Subject to Chemical Reaction Dependent on the First-Order Activation Energy, Arab. J. Sci. Eng., 1–10.10.1007/s13369-020-05324-6 Search in Google Scholar

3. Alsabery A.I., Ghalambaz M., Armaghani T., Chamkha, I. Hashim I., Pour M.S. (2020), Role of rotating cylinder toward mixed convection inside a wavy heated cavity via two-phase nanofluid concept, Nanomaterials, 10(6), 1–22.10.3390/nano10061138735323832526982 Search in Google Scholar

4. Arain M.B, Bhatti M.M., Zeeshan A., Saeed T., Hobiny A. (2020), Analysis of arrhenius kinetics on multiphase flow between a pair of rotating circular plates, Math. Probl. Eng., 2020. Search in Google Scholar

5. Attia H.A (1998), Unsteady MHD flow near a rotating porous disk with uniform suction or injection, Fluid Dyn. Res., 23(5), 283–290. Search in Google Scholar

6. Attia H.A. (2007), On the effectivness of ion slip and and uniform suction or injection on steady MHD flow due to rotating disk with heat transfer ohmic heating, Chem. Eng. Commun., 194(10), 1396–1407.10.1080/00986440701401545 Search in Google Scholar

7. Bachok N., Ishak A., Pop I. (2011), Flow and heat transfer over a rotating porous disk in a nanofluid, Phys. B Phys. Condens. Matter, 406(9), 1767–1772.10.1016/j.physb.2011.02.024 Search in Google Scholar

8. Bacri J.C., Perzynski R., Shliomis M.I., Burde G.I. (1995), Negative-viscosity effect in a magnetic fluid, Phys. Rev. Lett., 75(11), 2128–2131.10.1103/PhysRevLett.75.212810059221 Search in Google Scholar

9. Benton E.R. (1966), On the flow due to a rotating disk, J. Fluid Mech., 24(4), 781–800.10.1017/S0022112066001009 Search in Google Scholar

10. Bhandari A. (2020a), Study of ferrofluid flow in a rotating system through mathematical modeling, Math. Comput. Simul., 178, 290–306.10.1016/j.matcom.2020.06.018 Search in Google Scholar

11. Bhandari A. (2020b), Study of magnetoviscous effects on ferrofluid flow, Eur. Phys. J. Plus, 135(7), 537.10.1140/epjp/s13360-020-00563-w Search in Google Scholar

12. Bhatti M.M, Marin M., Zeeshan A., Ellahi R., Abdelsalam S.I. (2020a), Swimming of motile gyrotactic microorganisms and nanoparticles in blood flow through anisotropically tapered arteries, Front. Phys., 8(95).10.3389/fphy.2020.00095 Search in Google Scholar

13. Bhatti M.M., Riaz A., Zhang L., Sait S.M., Ellahi R. (2020b), Biologically inspired thermal transport on the rheology of Williamson hydromagnetic nanofluid flow with convection: an entropy analysis, J. Therm. Anal. Calorim., 1–16.10.1007/s10973-020-09876-5 Search in Google Scholar

14. Chamkha A.J. (1996), Non-darcy hydromagnetic free convection from a cone and a wedge in porous media, Int. Commun. Heat Mass Transf., 23(6), 875–887.10.1016/0735-1933(96)00070-X Search in Google Scholar

15. Chamkha A.J. (1997), MHD-free convection from a vertical plate embedded in a thermally stratified porous medium with Hall effects, Appl. Math. Model., 21(10), 603–609.10.1016/S0307-904X(97)00084-X Search in Google Scholar

16. Chamkha A.J., Dogonchi A.S., Ganji D.D. (2019), Magneto-hydrodynamic flow and heat transfer of a hybrid nanofluid in a rotating system among two surfaces in the presence of thermal radiation and Joule heating, AIP Adv., 9(2), 025103.10.1063/1.5086247 Search in Google Scholar

17. Chaturani P., Narasimman S. (1991), Numerical solution of a micropolar fluid flow between two rotating coaxial disks, Acta Mech., 89(1-4), 133–145. Search in Google Scholar

18. Cochran W.G. (1934), The flow due to a rotating disc, Math. Proc. Cambridge Philos. Soc., 30(3), 365–375.10.1017/S0305004100012561 Search in Google Scholar

19. Hayat T., Aziz A., Muhammad T., Alsaedi A. (2018a), Numerical treatment for Darcy–Forchheimer flow of nanofluid due to a rotating disk with convective heat and mass conditions, Int. J. Numer. Methods Heat Fluid Flow, 28(11), 2531–2550.10.1108/HFF-10-2017-0389 Search in Google Scholar

20. Hayat T., Qayyum S., Khan M.I., Alsaedi A. (2018b), Entropy generation in magnetohydrodynamic radiative flow due to rotating disk in presence of viscous dissipation and Joule heating, Phys. Fluids, 30(1), 017101.10.1063/1.5009611 Search in Google Scholar

21. Hayat T., Rashid M., Imtiaz M., Alsaedi A. (2017), Nanofluid flow due to rotating disk with variable thickness and homogeneous-heterogeneous reactions, Int. J. Heat Mass Transf., 113, 96–105. Search in Google Scholar

22. Ijaz Khan M., Khan S.A., Hayat T., Imran Khan M., Alsaedi A. (2020), Entropy optimization analysis in MHD nanomaterials (TiO2-GO) flow with homogeneous and heterogeneous reactions, Comput. Methods Programs Biomed., 184. Search in Google Scholar

23. Kelson N., Desseaux A. (2000), Note on porous rotating disk flow, ANZIAM J., 42, 837. Search in Google Scholar

24. Krishna M.V., Chamkha A.J. (2020), Hall and ion slip effects on MHD rotating flow of elastico-viscous fluid through porous medium, Int. Commun. Heat Mass Transf., 113, 104494. Search in Google Scholar

25. Kumar B., Seth G.D., Nandkeolyar R., Chamkha A.J. (2019), Outlining the impact of induced magnetic field and thermal radiation on magneto-convection flow of dissipative fluid, Int. J. Therm. Sci., 146, 106101. Search in Google Scholar

26. Mustafa M. (2017), MHD nanofluid flow over a rotating disk with partial slip effects: Buongiorno model, Int. J. Heat Mass Transf., 108, 1910–1916. Search in Google Scholar

27. Odenbach S., Thurm S. (2002), Magnetoviscous Effects in Ferro-fluids, 185–201.10.1007/3-540-45646-5_10 Search in Google Scholar

28. Qayyum S., Hayat T., Khan M.I., Alsaedi A. (2018), Optimization of entropy generation and dissipative nonlinear radiative Von Karman’s swirling flow with Soret and Dufour effects, J. Mol. Liq., 262, 261–274. Search in Google Scholar

29. Rahman M. (1978), On the numerical solution of the flow between a rotating and a stationary disk, J. Comput. Appl. Math., 4(4), 289–293.10.1016/0771-050X(78)90028-1 Search in Google Scholar

30. Ram P., Bhandari A. (2013a), Effect of phase difference between highly oscillating magnetic field and magnetization on the unsteady ferrofluid flow due to a rotating disk, Results Phys., 3, 55–60.10.1016/j.rinp.2013.03.002 Search in Google Scholar

31. Ram P., Bhandari A. (2013b), Effect of phase difference between highly oscillating magnetic field and magnetization on the unsteady ferrofluid flow due to a rotating disk, Results Phys., 3, 55–60.10.1016/j.rinp.2013.03.002 Search in Google Scholar

32. Ram P., Bhandari A. (2013c), Negative viscosity effects on ferrofluid flow due to a rotating disk, Int. J. Appl. Electromagn. Mech., 41(4), 467–478.10.3233/JAE-121637 Search in Google Scholar

33. Ram P., Sharma K., Bhandari A. (2010), Effect of Porosity on Ferrofluid Flow With Rotating Disk, 6(16), 67–76. Search in Google Scholar

34. Rashidi M.M., Abelman S., Mehr N.F. (2013), Entropy generation in steady MHD flow due to a rotating porous disk in a nanofluid, Int. J. Heat Mass Transf., 62(1), 515–525.10.1016/j.ijheatmasstransfer.2013.03.004 Search in Google Scholar

35. Reddy P.S., Sreedevi P., Chamkha A.J. (2017), MHD boundary layer flow, heat and mass transfer analysis over a rotating disk through porous medium saturated by Cu-water and Ag-water nanofluid with chemical reaction, Powder Technol., 307, 46–55.10.1016/j.powtec.2016.11.017 Search in Google Scholar

36. Rosensweig R.E. (1997), Ferrohydrodynamics, Dover Publications. Search in Google Scholar

37. Schlichting H., Gersten K. (2017), Boundary-Layer Theor, Berlin, Heidelberg: Springer Berlin Heidelberg.10.1007/978-3-662-52919-5 Search in Google Scholar

38. Schultz D.H., Shah V.L. (1979), Numerical solution of laminar recirculating flow between shrouded rotating disks, Comput. Fluids, 7(2), 137–144. Search in Google Scholar

39. Selimefendigil F., Chamkha A.J. (2019), MHD mixed convection of nanofluid in a three-dimensional vented cavity with surface corrugation and inner rotating cylinder, Int. J. Numer. Methods Heat Fluid Flow, 30(4), 1637–1660.10.1108/HFF-10-2018-0566 Search in Google Scholar

40. Sheikholeslami M., Shehzad S.A. (2018), Numerical analysis of Fe3O4–H2O nanofluid flow in permeable media under the effect of external magnetic source, Int. J. Heat Mass Transf., 118, 182–192. Search in Google Scholar

41. Shliomis M.I., Morozov K.I. (1994), Negative viscosity of ferrofluid under alternating magnetic field, Phys. Fluids, 6(8), 2855–2861.10.1063/1.868108 Search in Google Scholar

42. Takhar H.S., Chamkha A.J., Nath G. (2002), Combined heat and mass transfer along a vertical moving cylinder with a free stream, Heat Mass Transf., 36(3), 237–246. Search in Google Scholar

43. Takhar H.S., Chamkha A.J., Nath G. (2003), Unsteady mixed convection flow from a rotating vertical cone with a magnetic field, Heat Mass Transf. und Stoffuebertragung, 39(4), 297–304. Search in Google Scholar

44. Thameem Basha H., Sivaraj R., Subramanyam Reddy A., Chamkha A.J. (2019), SWCNH/diamond-ethylene glycol nanofluid flow over a wedge, plate and stagnation point with induced magnetic field and nonlinear radiation – solar energy application, Eur. Phys. J. Spec. Top., 228(12), 2531–2551.10.1140/epjst/e2019-900048-x Search in Google Scholar

45. Turkyilmazoglu M. (2012), MHD fluid flow and heat transfer due to a stretching rotating disk, Int. J. Therm. Sci., 51(1), 195–201.10.1016/j.ijthermalsci.2011.08.016 Search in Google Scholar

46. Turkyilmazoglu M. (2014), Nanofluid flow and heat transfer due to a rotating disk, Comput. Fluids, 94, 139–146. Search in Google Scholar

47. Veera Krishna M., Ameer Ahamad N., Chamkha A.J. (2020), Hall and ion slip effects on unsteady MHD free convective rotating flow through a saturated porous medium over an exponential accelerated plate, Alexandria Eng. J., 59(2), 565–577.10.1016/j.aej.2020.01.043 Search in Google Scholar

48. Veera Krishna M., Chamkha A.J. (2019), Hall and ion slip effects on MHD rotating boundary layer flow of nanofluid past an infinite vertical plate embedded in a porous medium, Results Phys., 15, 102652.10.1016/j.rinp.2019.102652 Search in Google Scholar