INFORMAZIONI SU QUESTO ARTICOLO

Cita

1. Abouaf M., Chenot J.L., Raisson G., Bauduin P. (1988), Finite element simulation of hot isostatic pressing of metal powders, International Journal for Numerical Methods in Engineering, 25, 191-212.10.1002/nme.1620250116Search in Google Scholar

2. Coble R.L. (1958), Initial Sintering of Alumina and Hematite, J. Amer. Ceramic Soc., 41, 55-62.Search in Google Scholar

3. Cocks A.C.F. (1989), Inelastic deformation of porous materials, Journal of the Mechanics and Physics of Solids, 37 (6), 693-715.10.1016/0022-5096(89)90014-8Search in Google Scholar

4. De Jonghe L.C., Rahaman M.N. (1988), Sintering Stress of Homogeneous and Heterogeneous Powder Compacts, Acta Metall., 36, 223-229.Search in Google Scholar

5. Duva J.M., Crow P.D. (1992), The densification of powders by power-law creep during hot isostatic pressing, Acta Metallurgica et Materialia, 40, 31-35.10.1016/0956-7151(92)90196-LSearch in Google Scholar

6. Henrich B. (2007), (PhD thesis) Partikelbasierte Simulationsmethoden in Pulvertechnologie und Nanofluidik, Albert-Ludwigs- Universität Freiburg im Breisgau.Search in Google Scholar

7. Henrich B., Wonisch A., Kraft T., Moseler M., Riedel H. (2007), Simulations of the influence of rearrangement during sintering, Acta Materialia, 55, 753-762.10.1016/j.actamat.2006.09.005Search in Google Scholar

8. Hosford W.F. (2006), Material Science, Cambridge University Press.Search in Google Scholar

9. Huilong Z., Averback R.S. (1996), Sintering processes of two nanoparticles: a study by molecular-dynamics simulations, Phil. Mag. Let., 73(1), 27-33.Search in Google Scholar

10. Johnson D.L. (1969), New Method of Obtaining Volume, Grain Boundary, and Surface Diffusion Coefficients from Sintering Data, Journal of Applied Physics, 40, 192-200.10.1063/1.1657030Search in Google Scholar

11. Kadau K., Entel P., Lomdahl P.S. (2002), Molecular-dynamics study of martensitic transformations in sintered Fe-Ni nanoparticles, Computer Physics Communications, 147, 126-129.10.1016/S0010-4655(02)00230-8Search in Google Scholar

12. Kadushnikov R.M., Skorokhod V.V., Kamenin I.G., Alievskii V.M., Yu Nurkanov E., Alievskii D.M. (2001), Theory and technology of sintering, heat, and chemical heat-treatment processes computer simulation of spherical particle sintering.Powder Metallurgy and Metal Ceramics, 40(3-4), 154-163.10.1023/A:1011927405856Search in Google Scholar

13. Luding S., Manetsberger K., Müllers J. (2005), A discrete model for long time sintering, Journal of Mechanics and Physics of Solids, 53, 455-49110.1016/j.jmps.2004.07.001Search in Google Scholar

14. Martin C.L., Schneider L.C.R., Olmos L., Bouvard D. (2006), Discrete element modeling of metallic powder sintering, Scripta Materialia, 55, 425-428.10.1016/j.scriptamat.2006.05.017Search in Google Scholar

15. Matsubara H. (1999), Computer simulations for the design of microstructural developments in ceramics, Computational Materials Science, 14, 125-128.10.1016/S0927-0256(98)00084-6Search in Google Scholar

16. Olmos L., Martin C.L., Bouvard D. (2009), Sintering of mixtures of powders: experiments and modelling, Powder Technology, 190, 134-140.10.1016/j.powtec.2008.04.057Search in Google Scholar

17. Parhami F., McMeeking R.M. (1998), A network model for initial stage sintering,Mechanics of Materials, 27, 111-124.10.1016/S0167-6636(97)00034-3Search in Google Scholar

18. Ponte Castañeda P. (1991), The effective mechanical properties of nonlinear isotropic composites, Journal of the Mechanics and Physics of Solids, 39, 45-71.10.1016/0022-5096(91)90030-RSearch in Google Scholar

19. Rojek J., Pietrzak K., Chmielewski M., Kaliński D., Nosewicz S. (2011), Discrete Element Simulation of Powder Sintering, Computer Methods in Materials Science, 11, 68-73.Search in Google Scholar

20. Sofronis P., McMeeking R.M. (1992), Creep of power-law material containing spherical voids, ASME Journal of Applied Mechanics, 59, S88-S95.10.1115/1.2899512Search in Google Scholar

21. Wonisch A., Kraft T., Moseler M., Riedel H. (2009), Effect of different particle size distributions on solid-state sintering: A microscopic simulation approach, J. Am. Ceram. Soc., 92, 1428-1434.Search in Google Scholar

22. Zachariah M.R., Carrier M.J. (1999), Molecular dynamics computation of gas-phase nanoparticle sintering: a comparison with phenomenological models, Journal of Aerosol Science, 30, 1139-1151.10.1016/S0021-8502(98)00782-4Search in Google Scholar

23. Zeng P., Zajac S., Clapp P.C., Rifkin J.A. (1998), Nanoparticle sintering simulations, Materials Science and Engineering, A252, 301-306.10.1016/S0921-5093(98)00665-0Search in Google Scholar

24. Zhu H., Averback R.S. (1995), Molecular dynamics simulations of densification process in nanocrystalline materials, Materials Science and Engineering A, A204(1-2), 96-100.10.1016/0921-5093(95)09944-1Search in Google Scholar