1. bookVolume 61 (2022): Edizione 2 (June 2022)
Dettagli della rivista
License
Formato
Rivista
eISSN
2545-3149
Prima pubblicazione
01 Mar 1961
Frequenza di pubblicazione
4 volte all'anno
Lingue
Inglese, Polacco
Accesso libero

Endophytic Fungi as Potential Producers of Anticancer Compounds

Pubblicato online: 09 Jun 2022
Volume & Edizione: Volume 61 (2022) - Edizione 2 (June 2022)
Pagine: 63 - 72
Ricevuto: 01 Feb 2022
Accettato: 01 Mar 2022
Dettagli della rivista
License
Formato
Rivista
eISSN
2545-3149
Prima pubblicazione
01 Mar 1961
Frequenza di pubblicazione
4 volte all'anno
Lingue
Inglese, Polacco
Wprowadzenie

Pomimo poprawy wskaźników przeżycia w ostatnich latach i postępów we wczesnym wykrywaniu i jakości dostępnego leczenia, nowotwory pozostają poważnym zagrożeniem dla zdrowia publicznego w krajach na całym świecie [51, 57]. Przyczyną śmierci co szóstej osoby na świecie jest zdiagnozowana choroba nowotworowa, co czyni ją drugą wiodącą przyczyną śmierci (zaraz po chorobach sercowo-naczyniowych). Szacuje się, że w 2020 r. 10 mln osób zmarło z powodu różnych nowotworów. Ocenia się, że nowotwory staną się główną przyczyną zgonów i najważniejszą barierą w zwiększaniu oczekiwanej długości życia w każdym kraju na świecie w XXI wieku. Ze statystyk globalnych zebranych w 2020 roku wynika, że najczęściej diagnozowanymi nowotworami na świecie były kobiecy rak piersi (2,26 mln przypadków), rak płuc (2,21 mln) i rak prostaty (1,41 mln). Najczęstszymi przyczynami zgonów z powodu raka były płuca (1,79 miliona zgonów), wątroba (830 000) i rak żołądka (769 000) [33, 77]. Choroby nowotworowe stanowią narastający problem zdrowotny również polskiego społeczeństwa i są drugą po chorobach układu krążenia przyczyną zgonów w Polsce. W ciągu ostatnich 30 lat liczba nowych zachorowań na raka w Polsce podwoiła się. W 1980 roku ogólna liczba zachorowań na raka wyniosła 64 820, podczas gdy w 2016 roku 164 140. Liczba zgonów z powodu nowotworów w Polsce również wzrasta, w ciągu ostatnich 50 lat aż 2,5-krotnie. Z dostępnych danych wynika, że w latach 1965 r. i 2016 r. ilość zgonów z powodu raka wyniosła odpowiednio 38 956 i 99 965 [73].

Obecnie obowiązujące standardy leczenia chorób nowotworowych często obejmują zabiegi chirurgiczne, radioterapię, po której zwykle następuje ogólnoustrojowa chemioterapia stosowana w leczeniu podtrzymującym. Głównymi wadami chemioterapii są nawroty raka dodatkowo powiązane z indukowaniem lekooporności komórek nowotworowych. Co istotne, często poważne działania niepożądane cytostatyków nie tylko mogą pogorszyć jakość życia pacjentów, ale przede wszystkim ograniczyć stosowanie wybranych leków przeciwnowotworowych. Niemniej jednak chemioterapia jest nadal jedną z najczęściej stosowanych metod leczenia wszystkich rodzajów nowotworów i na każdym etapie progresji raka [22, 72]. Prawie 80% obecnych leków przeciwnowotworowych pochodzi ze źródeł naturalnych. Odgrywają one główną rolę w chemioterapii raka od ponad 50 lat, zarówno pod względem dostarczania ustalonych leków i nowych związków do syntetycznej optymalizacji, jak i dostarczania substancji do badania komórkowych i molekularnych mechanizmów działania, mających znaczenie dla hamowania rozwoju nowotworu [15, 51, 72]. Szacuje się, że spośród 175 drobnocząsteczkowych leków przeciwnowotworowych stosowanych klinicznie i wykazujących znaczącą skuteczność w walce z rakiem, około 49% pochodzi z naturalnych produktów, których źródło stanowią rośliny, mikroorganizmy i organizmy morskie. Obecnie w chemioterapii nowotworów stosuje się następujące naturalne produkty pochodzenia drobnoustrojowego: aktynomycynę D, kilka pochodnych antracyklin, bleo mycynę, aktynomycynę D, mitomycynę C i mitoksantron. Wykorzystuje się również środki pochodzenia roślin wyższych: alkaloidy bisindolowe, półsyntetyczne epipodofilotoksyny oraz taksany. W ostatnich latach na rynek wprowadzono także pierwsze małocząsteczkowe środki przeciwnowotwo-rowe pochodzenia morskiego, w tym trabektedynę [22, 49, 51]. Aktywność przeciwnowotworowa większości naturalnych produktów często działa poprzez regulację funkcji immunologicznej, indukowanie apoptozy lub autofagii, a także przez hamowanie proliferacji komórek [15]. W pracy przeglądowej podsumowano skuteczność różnych naturalnych leków przeciwnowotworowych w aspekcie ich zdol ności do modulowania mikrośrodowiska raka i różnych kaskad sygnalizacji komórkowej. Zwrócono uwagę na aktywowanie i blokowanie przez związki pochodzenia naturalnego szlaków sygnalizacyjnych, w tym tych prowadzące do apoptozy i autofagii czy szlaków rozwoju embrionalnego (szlak Notch, szlak Wnt i szlak Hedgehog) [28].

Endofity

Rośliny od stuleci służyły jako źródło związków bioaktywnych stosowanych przeciwko licznym dolegliwościom. W ostatnich latach okazało się, że często mikroorganizmy związane z roślinami, a nie same rośliny, dostarczają substancji o wysokim potencjale terapeutycznym. [5, 60]. Wszystkie rośliny są zamieszki-wane przez różnorodne społeczności mikroorganizmów obejmujące taksony bakteryjne, grzybowe, archeony i protista. Dla zdefiniowania tych zasiedlających rośliny ww. społeczności organizmów stosowane jest określenie: endofity. Przez lata definicja endofitów ulegała zmianie. Obecnie termin endofity odnosi się do mikroorganizmów, zarówno bakterii, jak i grzybów, które można wyizolować z powierzchniowo odkażonej tkanki roślinnej lub wyekstrahować z rośliny. Istotny dla definicji endofitów jest również zapis informujący, iż endofity kolonizują wewnętrzne tkanki roślin bez wywoływania objawów chorobowych czy negatywnego wpływu na swojego roślinnego gospodarza [39, 50].

Endofity są endosymbiotyczną grupą drobnoustrojów, działającą jako rezerwuary nowych, biologicznie aktywnych metabolitów wtórnych, takich jak alkaloidy, kwasy fenolowe, chinony, steroidy, saponiny, garb-niki i terpenoidy. Związki te wykazują potencjalne właściwości lecznicze, w tym przeciwnowotworowe oraz przeciwdrobnoustrojowe, a także przeciwzapalne i anty oksydacyjne [37, 75, 78]. Warto nadmienić, iż zauważono zwiększoną produkcję metabolitów wtórnych przez rośliny, u których obecne były drobnoustroje endofityczne [11, 70]. Związki produkowane przez mikroorganizmy endofityczne są wykorzystywane również w innych obszarach, niż medycyna. W rolnictwie, dzięki korzystnemu wpływowi na wzrost i rozwój roślin odgrywają ważną rolę w przetrwaniu roślin (modulo-wanie fotosyntezy, zwiększanie pobierania składników odżywczych, łagodzenie skutków różnych stresów) oraz biokontroli, poprzez syntezę związków wpływających na ochronę swoich gospodarzy roślinnych przed fitopatogenami [37, 75, 78]. Grzyby endofityczne znalazły również swoje zastosowanie w pozyskiwaniu źródeł energii odnawialnych, szczególnie biopaliw [64]. Potencjalne możliwości wykorzystania organizmów endofitycznych przedstawiono na rycinie 1.

Ryc. 1

Potencjalne możliwości wykorzystania endofitów

Każda roślina jest gospodarzem jednego lub więcej gatunków endofitycznych grzybów. Mikroorganizmy te są różnorodnymi grupami parafiletycznymi i mogą rozwijać się bezobjawowo w różnych zdrowych tkankach żywych roślin nad i/lub pod ziemią, w tym w tkankach łodyg, liści, korzeni, kwiatów i owoców. Szacuje się, że w naturze występuje ponad milion endofitycznych gatunków grzybów [10, 44].

Substancje czynne izolowane z komórek/organizmów naturalnie występujących w środowisku stanowią ważne źródło dla opracowania nowych strategii terapeutycznych. Stosunkowa łatwy dostęp do organizmów środowiskowych, jak i ich ogromna bioróżnorodność jest cechą korzystną w poszukiwaniu nowych leków. W ostatnich latach zwiększyło się zainteresowanie organizmami endofitycznymi, ze względu na szereg związków bioaktywnych produkowanych przez nie, szczególnie w ujęciu ich potencjału terapeutycznego. Grzyby endofityczne stanowią bogate źródło bioaktywnych metabolitów, którymi można manipulować w celu uzyskania pożądanych, nowych analogów wykorzystywanych w chemioterapii [85].

Niniejsze opracowanie przedstawia zebrane informacje dotyczące związków o charakterze przeciwnowotworowym syntetyzowanych przez grzyby endofityczne, opublikowane w latach 2015–2021.

Związki o potencjale przeciwnowotworowym, syntetyzowane przez grzyby endofityczne

Spośród istotnych w aspekcie działania przeciwnowotworowego związków czynnych produkowanych przez grzyby endofityczne wymienia się: taksol, kampotecynę, podofilotoksynę, winblastynę i wynkrystynę oraz cytochalazyny.

Taksol

Wzrost zainteresowania poszukiwaniem związków przeciwnowotworowych wytwarzanych przez mikroorganizmy nastąpił po odkryciu taksolu [11]. Taksol (paklitaksel), to tetracykliczny diterpenoidowy związek bioaktywny należący do klasy taksanów. Związek ten występuje w każdym gatunku cisu na świecie (Taxus), ale pierwotnie został wyizolowany z Taxus brevifolia (cis pacyficzny). Paklitaksel jest najskuteczniejszym i najczęściej stosowanym chemioterapeutykiem, wykorzystywanym w leczeniu raka sutka, płuca, jajników i raka szyjki macicy. Podstawowy mechanizm działania paklitakselu związany jest ze zdolnością do destabilizacji mikrotubul i zaburzania ich dynamicznej równowagi [23, 71]. Wykazano m.in. silną aktywność cytotoksyczną taksolu izolowanego z Cladosporium oxysporum wobec testowanych in vitro linii komórek ludzkiego raka HCT15 [35] oraz z izolatów grzyba Grammothele lineata wobec linii komórkowej HeLa [23].

Do wyleczenia około pięciuset pacjentów potrzebny jest 1 kg taksolu, do uzyskania którego wymagane jest 10 ton kory cisów, co odpowiada 300 drzewom [91]. Rosnące zapotrzebowanie na chemioterapeutyki i ograni czona podaż naturalnego taksolu ostatecznie podniosły koszt leku. Półsynteza z wykorzystaniem prekursorów taksoli nie jest w stanie zaspokoić globalnej podaży i zwięk szyła potrzebę znalezienia innych moż-liwych sposobów produkcji taksolu [24]. Alternatywa wytwarzania taksolu pojawiła się wraz z odkryciem endofitycznych grzybów Taxomyces andreanae, wyizolowanych z gatunków Taxus brevifolia, których jednym z wytwarzanych metabolitów wtórnych był paklitaksel [86, 91]. W ostatnich kilku latach opublikowano szereg artykułów, w których wykazywano, że niski poziom taksolu można uzyskać z wielu izolowanych grzybów endofitycznych, nie tylko z gatunków Taxus, ale także z innych roślin (Tab. I).

Grzyby endofityczne produkujące taksol

Grzyb endofityczny Gospodarz roślinny Rok Źródło
Paraconiothyrium variabile (SS1), Epicoccum nigrum (SS2) Taxus baccata 2015 [79]
Cladosporium oxysporum Moringa oleifera 2015 [36]
Fusarium sp. Taxus wallichiana var. mairei 2015 [96]
Phoma sp. Calotropis gigantea 2015 [41]
Paraconiothyrium variabile Taxus baccata 2016 [80]
Cladosporium sp. Taxus baccata 2017 [47]
Grammothele lineata Corchorus olitorius 2017 [24]
Aspergillus aculeatinus Tax-6 Taxus chinensis var. mairei 2017 [69]
Cladosporium sp. Taxus baccata 2017 [97]
Aspergillus fumigatus TXD105 Taxus distichum 2017 [43]
Aspergillus tenuissima TER995 Taxus arjuna
Epicoccum nigrum (YEF 2) Taxus baccata 2018 [74]
Aspergillus fumigatus (TPF-06) Taxus sp. 2019 [52]
Pestalotiopsis microspora Taxodium mucronatum 2019 [81]
Alternaria brassicicola Terminalia arjuna 2019 [35]
Aspergillus niger Zea mays 2019 [29]
Aspergillus flavus Solanum nigrum
Aspergillus terreus Ocimum basilicum
Aspergillus terreus Erchharnia crassipes
Aspergillus niger Ricinus communis
Penicillium chrysogenum Citrus xaurantium
Epicoccum nigrum TXB502 Taxus baccata 2020 [31]
Penicillium polonicum AUMC14487 Ginkgo biloba 2021 [2]
Annulohypoxylon sp. MUS1 Taxus wallichiana Zucc. 2021 [34]
Kamptotecyna

Kamptotecyna (camptothecin – CPT) to pentacykliczny alkaloid pirochinolinowy, który po raz pierwszy wyizolowano z kory Camptotheca acuminata („chińskie szczęśliwe drzewo”) w 1966 r. [46, 85]. W latach siedemdziesiątych ubiegłego wieku kamptotecyna została zatwierdzona przez Amerykańską Agencję ds. Żywności i Leków (Food and Drug Administration – FDA) do wstępnych badań klinicznych przeciwko rakowi okrężnicy, pomimo braku znajomości mechanizmu jej działania. Z uwagi na fakt, że kamptotecyna powodowała poważne skutki niepożądane, takie jak zahamowanie czynności szpiku kostnego, wspomniane badania kliniczne zostały przerwane. W następnej dekadzie wykazano, iż aktywność przeciwnowotworowa kamptotecyny jest wynikiem hamowania przez nią topoizomerazy I DNA. To odkrycie wzbudziło ponowne zainteresowanie CPT, jako lekiem i zaowocowało opracowaniem metody terapeutycznej z wykorzystaniem kamptotecyny [56, 87]. Poza CPT, rozpuszczalne w wodzie pochodne kamptotecyny – topotekan i irynotekan – zostały zatwierdzone przez FDA i są stosowane w leczeniu różnych nowotworów, głównie jajnika, płuca i jelit. Niestety, ekstrakcja CPT z ograniczonych naturalnych zasobów roślinnych, nie zaspokaja rosnącego zapotrzebowania rynku na ten związek. Ze względu na niską zawartość kamptotecyny w roślinach (około 1 mg/g suchej masy), ponownie istotne staje się poszukiwanie alternatywnych źródeł i opracowanie nowych metod otrzymywania CPT do zastosowań klinicznych [46]. Pierwsze informacje o produkcji kamptotecyny przez grzyby endofityczne zanotowano w 2005 roku [67]. Od tego czasu zwiększyło się zainteresowanie wytwarzaniem CPT i jego pochodnych przez grzyby endofityczne. W literaturze można znaleźć informacje na temat skuteczności działania kampotecyny produkowanej przez endofity względem różnych nowotworów. W badaniach in vitro potwierdzono np. wysoką cytotoksyczność kamptotecyny izolowanej z grzybów endofitycznych Fusarium solani ATLOY-8 względem linii komórkowej reprezentującej raka sutka – MCF-7 [20]. W przypadku kampotecyny izolowanej z Alternaria burnsii cytotoksyczność potwierdzono względem pięciu niezależnych linii komórkowych: MCF7, SKOV3, H1299, HT29 i HEK293T, z których to linii każda reprezentuje inny nowotwór (odpowiednio: rak sutka, rak jajnika, rak płuca, rak jelita grubego) i immortalizowane embrionalne komórki nerki (linia HEK293T) [57]. Zestawienie danych literaturowych z przedstawionego zakresu tematycznego przedstawiono w tabeli II.

Grzyby endofityczne produkujące kamptotecynę

Grzyb endofityczny Gospodarz roślinny Rok Źródło
Fusarium oxysporum NFX06 Nothapodytes foetida 2015 [59]
Colletotrichum fructicola SUK1 Corynespora cassiicola SUK2 Nothapodytes nimmoniana 2016 [14]
Fusarium solani Camptotheca acuminata 2017 [70]
Fusarium solani ATLOY – 8 Chonemorpha fragrans 2020 [21]
Meyerozyma sp. OmF3Talaromyces sp. OmF4 Ophiorrhiza mungos 2020 [8]
Alternaria alstroemeriaeAlternaria burnsii Nothapodytes nimmoniana 2021 [58]
Phyllosticta elongata MH458897 Cipadessa baccifera 2021 [27]
Diaporthe caatingaensis MT192326 Buchanania axillaris 2021 [26]
Diaporthe sp. F18 Nothapodytes nimmoniana 2021 [25]
Podofilotoksyna

Podofilotoksyna (podophyllotoxin – PTOX) to naturalny środek leczniczy, należący do grupy lignanów, występujący w podofilinie, żywicy wytwarzanej przez rośliny z rodzaju Podophyllum. PTOX została po raz pierwszy wyizolowana w 1880 r. z północnoamerykań-skiej rośliny Podophyllum peltatum L., zwanej potocznie amerykańską mandragorą lub majowym jabłkiem. Ten naturalny produkt został również wyizolowany z Podophyllum emodi (Indian podophyllum) [6]. Mechanizm działania podofilotoksyny związany jest z hamowaniem polimeryzacji tubuliny. Podofilotoksyna przyłącza się do tubuliny w domenie kolchicyny, co wpływa hamująco na tworzenie się mikrotubul i powoduje zablokowanie cyklu komórkowego w metafazie. Podofilotoksyna nie jest klinicznie użytecznym lekiem przeciwnowotworowym ze względu na wysoką toksyczność. Półsyntetyczne pochodne PTOX, takie jak etopozyd, tenipozyd i etopofos są natomiast wykorzystywane w leczeniu wielu rodzajów nowotworów, w tym raka szyjki macicy i raka sutka. Wymienione pochodne hamują aktywność topoizomerazy II, która jest niezbędna do replikacji DNA i podziału komórek [7, 98, 100]. Z powodu nadmiernej ekstrakcji i powolnego wzrostu rośliny Podophyllum zalicza się do zagrożonych gatunków roślin. W związku z powyższym, w celu utrzymania stałego zaopatrzenia w podofilotoksyny do wytwarzania cząsteczek przeciwnowotworowych, istnieje pilna potrzeba poszukiwania alternatywnych źródeł do izolacji tego chemioterapeutyku. Wśród dostępnych organizmów badano grzyby endofityczne pod kątem ich potencjału do produkcji podofilotoksyny. He i wsp. określali wpływ podofilotoksyny będącej metabolitem wtórnym grzybów endofitycznych izolowanych z Ginko biloba względem komórek raka szyjki macicy – linii HeLa. Efektem przeprowadzonych badań było wyraźne hamowanie proliferacji komórek HeLa, sprzyjanie ich apoptozie i blokowanie ich migracji [39]. Zdolność produkcji podofilotoksyny potwierdzono dla innych gatunków grzybów endofitycznych. Zestawienie danych źródłowych z tego zakresu przedstawiono w tabeli III.

Grzyby endofityczne produkujące podofilotoksynę

Grzyb endofityczny Gospodarz roślinny Rok Źródło
Phialocephala podophylli Podophyllum peltatum 2015 [7]
Alternaria tenuissima Sinopodophyllum emodi (Wall.) Ying 2016 [53]
Chaetomium globosum Sinopodophyllum hexandrum 2017 [89]
Fusarium sp. Dysosma versipellis 2018 [82]
Chaetomium globosum MF564Chaetomium sp. 4RF3Pseudallescheria sp. T55 Ginko biloba 2020 [40]
Winblastyna i winkrystyna

Winblastyna (vinblastine – VBL) i winkrystyna (vincristine – VCR) należą do terpenoidowych alkaloidów indolowych (terpenoid indole alkaloid – TIA) izolowanych z Catharanthus roseus L., (barwinek różowy) rośliny o silnym znaczeniu leczniczym, należącej do rodziny Apocynaceae [3]. Winblastyna i winkrystyna są ważnymi środkami przeciwnowotworowymi, które są wytwarzane przez dimeryzację alkaloidów pochodzenia roślinnego, katarantyny i windoliny [17]. Ich odkrycie zdefiniowało ważny mechanizm działania przeciwnowotworowego, (obecnie uważanego za najbardziej skuteczny w onkologii), obejmujący hamowanie mitozy poprzez wiązanie tubuliny i hamowanie polimeryzacji mikrotubul. Głównym mechanizmem działania winkrystyny jest wpływ na układ mikrotubularny i na dynamikę powstawania wrzeciona mitotycznego. Formuła winkrystyny ułatwia wiązanie białka tubuliny i zapobiega separacji chromosomów w momencie metafazy, ostatecznie prowadząc do śmierci komórki. W mechanizmie działania przeciwnowotworowego winkrystyny ważne jest również zaburzenie transportu wewnątrzkomórkowego i zmniejszenie przepływu krwi przez tkankę nowotworową, prawdopodobnie z powodu hamowania angiogenezy [4, 18, 38].

Winblastyna jest stosowana w leczeniu ziarnicy złośliwej (choroby Hodgkina), chłoniaków nieziarniczych, raka jąder, raka sutka, płuca i innych typów nowotworów. Winkrystyna natomiast znalazła swoje zastosowanie w terapii ostrej białaczki limfoblastycznej, w leczeniu ziarnicy złośliwej, chłoniaków nieziarniczych, mięsaków i wielu innych rodzajów nowotworów oraz niezłośliwych zaburzeń hematologicznych [13, 18, 38]. Duże znaczenie farmakologiczne omawianych alkaloidów indolowych kontrastuje z ich niewielką zawartością w roślinie (około 0,0005%). Ze względu na znaczenie, wysoką cenę i niewielkie ilości alkaloidów w Catharanthus roseus próby zwiększenia produkcji tych związków doprowadziły do szeroko zakrojonych badań nad tą rośliną. Kładzie się również nacisk na potrzebę izolacji różnorodnych nisz endofitów z barwinka różowego, celem zwiększenia możliwości pozyskiwania terpenoidowych alkaloidów indolowych o działaniu przeciwnowotworowym [48, 99]. Efektem przeprowadzonych badań in vitro było wykazanie dzia-łania cytotoksycznego winkrystyny i winblastyny produkowanych przez grzyby endofityczne, w tym Nigrospora sphaerica względem linii komórkowej raka sutka MDA-MB 231 [9] oraz Alternaria alternata względem linii komórkowych MCF-7 i HepG-2, reprezentujących kolejno: raka sutka i pierwotnego raka wątroby [29]. Literaturowe doniesienia ostatnich lat dotyczące grzybów endofitycznych wytwarzających winblastynę i winkrystynę oraz odpowiadające im rośliny żywicielskie zebrano w tabelach IV oraz V.

Grzyby endofityczne produkujące winblastynę

Grzyb endofityczny Gospodarz roślinny Rok Źródło
Talaromyces radicus Catharanthus roseus 2016 [62]
Nigrospora sphaerica Catharanthus roseus 2017 [9]
Chaetomium globosum Cr95 Catharanthus roseus 2019 [95]
Curvularia verruculosa Catharanthus roseus 2020 [63]
Botryosphaeria laricina CRS1 Catharanthus roseus 2020 [12]
Alternaria alternata Melissa officinalis 2021 [30]

Grzyby endofityczne produkujące winkrystynę

Grzyb endofityczny Gospodarz roślinny Rok Źródło
Talaromyces radicus Catharanthus roseus 2016 [62]
Botryosphaeria laricina CRS1 Catharanthus roseus 2020 [12]
Cytochalazyny

Cytochalazyny są częścią dużej grupy metabolitów zwanych cytochalazami i zawierają różnorodne struktury hybrydowe poliketydowo-aminokwasowe o szerokim zakresie charakterystycznych funkcji biologicznych o działaniu przeciwdrobnoustrojowym, przeciwpaso-żytniczym, przeciwwirusowym i przeciwnowotworowym [32]. Związki te stanowią wtórne metabolity grzybów i jak wykazano w ponad trzech tysiącach publikacji (dane z bazy NCBI PubMed), wywierają one różny wpływ na komórki zdrowe i nowotworowe. Cytochalazyny są toksynami mikogennymi, które wiążą aktynę, blokując w ten sposób polimeryzację. W konsekwencji tworzenie mikrowłókien jest znacznie zahamowane, a to z kolei wpływa na morfologię komórek, zmienia ich cytoszkielet, hamuje procesy komórkowe, takie jak migracja komórek, zdolność do adhezji, transport wewnątrz- i międzykomórkowy, podziały komórkowe, a nawet indukuje regulowaną śmierć komórek, taką jak apoptoza. Inwazyjność guza i potencjał przerzutowy są ściśle związane z deregulacją cytoszkieletu aktynowego, dlatego cytochalazyny uznaje się za potencjalne leki przeciwnowotworowe. Spośród ponad 60 związków, najszerzej wykorzystywane w badaniach przeciwnowotworowych to cytochalazyny B, D i H [83, 90, 94].

Większość cytochalazyn jest wyposażona w 9 do 15-członowy pierścień makrocykliczny, który czasami może podlegać różnej wewnątrzcząsteczkowej rearan-żacji, tworząc różne układy pierścieniowe Ze względu na występowanie unikalnego rusztowania chemicznego w budowie cytochalazyn ich synteza chemiczna jest bardzo kosztowna [83, 90]. Początkowo doniesienia o występowaniu cytochalazyn ograniczały się do makroskopowych grzybów lądowych [1, 92], jednak w ostatnich latach zwiększyło się zainteresowanie produkcją cytochalazyn przez grzyby endofityczne w aspekcie ich potencjału przeciwnowotworowego [61]. Dotychczasowe osiągnięcia wskazują duże możliwości wykorzystania grzybów endofitycznych do produkcji cytochalazyn. Wykazano aktywność przeciwnowotworową cytochalazyny H izolowanej z Diaporthe phaseolorum-92C względem linii komórkowych reprezentujących raka sutka MDA-MB-231 i MCF-7 [16] oraz cytochalazyn będących metabolitami wtórnymi Xylaria sp. CFL5 skutecznych względem komórek gruczolakoraka żołądka – linii AGS [53]. Wyizolowano także nową cytochalazynę z grzyba endofitycznego Trichoderma harzianum wykazującą działanie cytotoksyczne względem linii komórkowej mysiego chłoniaka (L5178Y) i przeciwko liniom komórkowym ludzkiego raka jajnika (A2780) [19]. Opisane doniesienia literaturowe z lat 2015–2021 dotyczące grzybów endofitycznych produkujących cytochalazyny o działaniu cytotoksycznym zestawiono w tabeli VI.

Grzyby endofityczne produkujące cytochalazyny o działaniu przeciwnowotworowym

Grzyb endofityczny Gospodarz roślinny Rok Źródło
Phoma multirostrata EA-12 Eupatorium adenophorum 2015 [20]
Trichoderma harzianum Cola nitida 2015 [19]
Phomopsis sp. Garcinia kola 2016 [45]
Diaporthe phaseolorum 92C Combretum lanceolatum 2017 [16]
Phomopsis sp. Namorzyny w Zhanjiang (Chiny) 2018 [55]
Rosellinia sanctae-cruciana Albizia lebbeck 2018 [76]
Aspergillus sp. Pinellia ternata 2019 [92]
Xylaria cf. curta Solanum tuberosum 2019 [90]
Phoma multirostrata XJ-2-1 Parasenecio albus 2020 [65]
Chaetomium globosum P2-2-2 Ptychomitrium 2020 [66]
Diaporthe sp. SC-J0138 Cyclosorus parasiticus 2020 [93]
Aspergillus flavipes KIB-392 Hevea brasiliensis 2021 [88]
Aspergillus sp. FT1307 Heliotropium sp. 2021 [68]
Xylaria sp. CFL5 Cephalotaxus fortunei 2021 [54]
Podsumowanie

Ciągle pojawiają się doniesienia na temat nowych substancji czynnych o działaniu przeciwnowotworowym izolowanych z grzybów endofitycznych. Do tych związków zalicza się: alternaliol, chetomugilid, czy emerydon B. Często są to związki z różnych grup chemicznych. Poza alkaloidami uwzględnia się również terpenoidy, laktony, chinony, pirany, pirony, aksany, ksantony, karotenoidy, związki siarkoorganiczne, poliketydy, związki fenolowe, peptydy i szereg innych [42, 84].

Rośliny lecznicze wytwarzają cenne metabolity wtórne o potencjalnych właściwościach przeciwnowotworowych, jednak jak wykazano w niniejszej monografii, produkcja związków pochodzących z endofitów staje się alternatywnym źródłem chemioterapeutków. Endofity można uznać za potencjalne źródło nowych substancji aktywnych wykorzystywanych w leczeniu wielu chorób, nie tylko nowotworowych. Jako liczne zasoby mikroorganizmów endofity tworzą bogate pokłady nowych związków naturalnych o wysokim poziomie różnorodności strukturalnej i funkcjonalnej. Można stwierdzić, iż badania nad endofitami i produktami ich metabolizmu wydają się być istotne tak w aspektach poznawczych, jak i praktycznych, w tym szczególnie w odniesieniu do terapii chorób nowotworowych.

Ryc. 1

Potencjalne możliwości wykorzystania endofitów
Potencjalne możliwości wykorzystania endofitów

Grzyby endofityczne produkujące kamptotecynę

Grzyb endofityczny Gospodarz roślinny Rok Źródło
Fusarium oxysporum NFX06 Nothapodytes foetida 2015 [59]
Colletotrichum fructicola SUK1 Corynespora cassiicola SUK2 Nothapodytes nimmoniana 2016 [14]
Fusarium solani Camptotheca acuminata 2017 [70]
Fusarium solani ATLOY – 8 Chonemorpha fragrans 2020 [21]
Meyerozyma sp. OmF3Talaromyces sp. OmF4 Ophiorrhiza mungos 2020 [8]
Alternaria alstroemeriaeAlternaria burnsii Nothapodytes nimmoniana 2021 [58]
Phyllosticta elongata MH458897 Cipadessa baccifera 2021 [27]
Diaporthe caatingaensis MT192326 Buchanania axillaris 2021 [26]
Diaporthe sp. F18 Nothapodytes nimmoniana 2021 [25]

Grzyby endofityczne produkujące winblastynę

Grzyb endofityczny Gospodarz roślinny Rok Źródło
Talaromyces radicus Catharanthus roseus 2016 [62]
Nigrospora sphaerica Catharanthus roseus 2017 [9]
Chaetomium globosum Cr95 Catharanthus roseus 2019 [95]
Curvularia verruculosa Catharanthus roseus 2020 [63]
Botryosphaeria laricina CRS1 Catharanthus roseus 2020 [12]
Alternaria alternata Melissa officinalis 2021 [30]

Grzyby endofityczne produkujące cytochalazyny o działaniu przeciwnowotworowym

Grzyb endofityczny Gospodarz roślinny Rok Źródło
Phoma multirostrata EA-12 Eupatorium adenophorum 2015 [20]
Trichoderma harzianum Cola nitida 2015 [19]
Phomopsis sp. Garcinia kola 2016 [45]
Diaporthe phaseolorum 92C Combretum lanceolatum 2017 [16]
Phomopsis sp. Namorzyny w Zhanjiang (Chiny) 2018 [55]
Rosellinia sanctae-cruciana Albizia lebbeck 2018 [76]
Aspergillus sp. Pinellia ternata 2019 [92]
Xylaria cf. curta Solanum tuberosum 2019 [90]
Phoma multirostrata XJ-2-1 Parasenecio albus 2020 [65]
Chaetomium globosum P2-2-2 Ptychomitrium 2020 [66]
Diaporthe sp. SC-J0138 Cyclosorus parasiticus 2020 [93]
Aspergillus flavipes KIB-392 Hevea brasiliensis 2021 [88]
Aspergillus sp. FT1307 Heliotropium sp. 2021 [68]
Xylaria sp. CFL5 Cephalotaxus fortunei 2021 [54]

Grzyby endofityczne produkujące podofilotoksynę

Grzyb endofityczny Gospodarz roślinny Rok Źródło
Phialocephala podophylli Podophyllum peltatum 2015 [7]
Alternaria tenuissima Sinopodophyllum emodi (Wall.) Ying 2016 [53]
Chaetomium globosum Sinopodophyllum hexandrum 2017 [89]
Fusarium sp. Dysosma versipellis 2018 [82]
Chaetomium globosum MF564Chaetomium sp. 4RF3Pseudallescheria sp. T55 Ginko biloba 2020 [40]

Grzyby endofityczne produkujące taksol

Grzyb endofityczny Gospodarz roślinny Rok Źródło
Paraconiothyrium variabile (SS1), Epicoccum nigrum (SS2) Taxus baccata 2015 [79]
Cladosporium oxysporum Moringa oleifera 2015 [36]
Fusarium sp. Taxus wallichiana var. mairei 2015 [96]
Phoma sp. Calotropis gigantea 2015 [41]
Paraconiothyrium variabile Taxus baccata 2016 [80]
Cladosporium sp. Taxus baccata 2017 [47]
Grammothele lineata Corchorus olitorius 2017 [24]
Aspergillus aculeatinus Tax-6 Taxus chinensis var. mairei 2017 [69]
Cladosporium sp. Taxus baccata 2017 [97]
Aspergillus fumigatus TXD105 Taxus distichum 2017 [43]
Aspergillus tenuissima TER995 Taxus arjuna
Epicoccum nigrum (YEF 2) Taxus baccata 2018 [74]
Aspergillus fumigatus (TPF-06) Taxus sp. 2019 [52]
Pestalotiopsis microspora Taxodium mucronatum 2019 [81]
Alternaria brassicicola Terminalia arjuna 2019 [35]
Aspergillus niger Zea mays 2019 [29]
Aspergillus flavus Solanum nigrum
Aspergillus terreus Ocimum basilicum
Aspergillus terreus Erchharnia crassipes
Aspergillus niger Ricinus communis
Penicillium chrysogenum Citrus xaurantium
Epicoccum nigrum TXB502 Taxus baccata 2020 [31]
Penicillium polonicum AUMC14487 Ginkgo biloba 2021 [2]
Annulohypoxylon sp. MUS1 Taxus wallichiana Zucc. 2021 [34]

Grzyby endofityczne produkujące winkrystynę

Grzyb endofityczny Gospodarz roślinny Rok Źródło
Talaromyces radicus Catharanthus roseus 2016 [62]
Botryosphaeria laricina CRS1 Catharanthus roseus 2020 [12]

Abate D., Abraham W.R., Meyer H.: Cytochalasins and phytotoxins from the fungus Xylaria obovata. Phytochemistry, 44, 1443–1448 (1997) AbateD. AbrahamW.R. MeyerH. Cytochalasins and phytotoxins from the fungus Xylaria obovata Phytochemistry 44 1443 1448 1997 10.1016/S0031-9422(96)00780-7 Search in Google Scholar

Abdel-Fatah S.S., El-Batal A.I., El-Sherbiny G.M., Khalaf M.A., El-Sayed A.S.: Production, bioprocess optimization and γ-irradiation of Penicillium polonicum, as a new Taxol producing endo phytefrom Ginko biloba. Biotechnol. Rep. 30, e00623 (2021) Abdel-FatahS.S. El-BatalA.I. El-SherbinyG.M. KhalafM.A. El-SayedA.S. Production, bioprocess optimization and γ-irradiation of Penicillium polonicum, as a new Taxol producing endo phytefrom Ginko biloba Biotechnol. Rep. 30 e00623 2021 10.1016/j.btre.2021.e00623812086134026575 Search in Google Scholar

Alam M.M., Naeem M., Khan M.M.A., Uddin M.: Vincristine and Vinblastine Anticancer alkaloids: pharmacological applications and strategies for yield improvement. Cathar. Roseus Curr. Res. Futur. Prospect. 277–307 (2017) AlamM.M. NaeemM. KhanM.M.A. UddinM. Vincristine and Vinblastine Anticancer alkaloids: pharmacological applications and strategies for yield improvement Cathar. Roseus Curr. Res. Futur. Prospect 277 307 2017 10.1007/978-3-319-51620-2_11 Search in Google Scholar

Allemann O., Brutsch M., Lukesh J.C., III, Brody D.M., Boger D.L.: Synthesis of a Potent Vinblastine: Rationally Designed Added Benign Complexity. J. Am. Chem. Soc. 138, 8376 (2016) AllemannO. BrutschM. LukeshJ.C.III BrodyD.M. BogerD.L. Synthesis of a Potent Vinblastine: Rationally Designed Added Benign Complexity J. Am. Chem. Soc. 138 8376 2016 10.1021/jacs.6b04330494541827356080 Search in Google Scholar

Altaf M.M., Ahmad Khan M.S., Ahmad I.: Diversity of Bio-active Compounds and Their Therapeutic Potential. New Look to Phytomedicine, 11, 15–34 (2019) AltafM.M. Ahmad KhanM.S. AhmadI. Diversity of Bio-active Compounds and Their Therapeutic Potential New Look to Phytomedicine 11 15 34 2019 Search in Google Scholar

Ardalani H., Avan A., Ghayour-Mobarhan M.: Podophyllo toxin: a novel potential natural anticancer agent. AJP, 7, 285–294 (2017) ArdalaniH. AvanA. Ghayour-MobarhanM. Podophyllo toxin: a novel potential natural anticancer agent AJP 7 285 294 2017 Search in Google Scholar

Arneaud S.L.B., Porter J.R.: Investigation and expression of the secoisolariciresinol dehydrogenase gene involved in podophyllotoxin biosynthesis. Mol. Biotechnol. 57, 961–973 (2015) ArneaudS.L.B. PorterJ.R. Investigation and expression of the secoisolariciresinol dehydrogenase gene involved in podophyllotoxin biosynthesis Mol. Biotechnol 57 961 973 2015 10.1007/s12033-015-9888-826289300 Search in Google Scholar

Aswani R., Jasim B., Arun Vishnu R., Antony L., Remakan-than A., Aravindakumar C.T., Radhakrishnan E.K.: Nanoelicitor based enhancement of camptothecin production in fungi isolated from Ophiorrhiza mungos. Biotechnol. Prog. e3039 (2020) AswaniR. JasimB. Arun VishnuR. AntonyL. Remakan-thanA. AravindakumarC.T. RadhakrishnanE.K. Nanoelicitor based enhancement of camptothecin production in fungi isolated from Ophiorrhiza mungos Biotechnol. Prog. e3039 2020 10.1002/btpr.303932558398 Search in Google Scholar

Ayob F.W., Simarani K., Abidin N.Z., Mohamad J.: First report on a novel Nigrospora sphaerica isolated from Catharanthus roseus plant with anticarcinogenic properties. Microb. Biotechnol. 10, 926 (2017) AyobF.W. SimaraniK. AbidinN.Z. MohamadJ. First report on a novel Nigrospora sphaerica isolated from Catharanthus roseus plant with anticarcinogenic properties Microb. Biotechnol 10 926 2017 10.1111/1751-7915.12603548154428612376 Search in Google Scholar

Baker S., Prudnikova S.V., Volova T.: Siberian plants: untapped repertoire of bioactive endosymbionts. Front. Biol. 13, 157–167 (2018) BakerS. PrudnikovaS.V. VolovaT. Siberian plants: untapped repertoire of bioactive endosymbionts Front. Biol. 13 157 167 2018 10.1007/s11515-018-1483-5 Search in Google Scholar

Baker S., Satish S.: Endophytes: natural warehouse of bioactive compounds. Drug Invention Today, 4, 548–553 (2012) BakerS. SatishS. Endophytes: natural warehouse of bioactive compounds Drug Invention Today 4 548 553 2012 Search in Google Scholar

Bandara C.J., Siriwardhana A., Karunaratne D.N., Ratnayake Bandara B.M., Wickramasinghe A., Krishnarajah S.A., Karunaratne V.: Production of vincristine and vinblastine by the endophytic fungus Botryosphaeria laricina strain (CRS1) is dependent on stimulating factors present in catharanthus roseus. Nat. Prod. J. 11, 221–230 (2020) BandaraC.J. SiriwardhanaA. KarunaratneD.N. Ratnayake BandaraB.M. WickramasingheA. KrishnarajahS.A. KarunaratneV. Production of vincristine and vinblastine by the endophytic fungus Botryosphaeria laricina strain (CRS1) is dependent on stimulating factors present in catharanthus roseus Nat. Prod. J. 11 221 230 2020 10.2174/2210315510666200108102735 Search in Google Scholar

Banyal A., Thakur V., Thakur R., Kumar P.: Endophytic microbial diversity: a new hope for the production of novel anti-tumor and anti-HIV agents as future therapeutics. Curr. Microbiol. 78, 1699–1717 (2021) BanyalA. ThakurV. ThakurR. KumarP. Endophytic microbial diversity: a new hope for the production of novel anti-tumor and anti-HIV agents as future therapeutics Curr. Microbiol 78 1699 1717 2021 10.1007/s00284-021-02359-233725144 Search in Google Scholar

Bhalkar B.N., Patil S.M., Govindwar S.P.: Camptothecine production by mixed fermentation of two endophytic fungi from Nothapodytes nimmoniana. Fungal Biol. 120, 873–883 (2016) BhalkarB.N. PatilS.M. GovindwarS.P. Camptothecine production by mixed fermentation of two endophytic fungi from Nothapodytes nimmoniana Fungal Biol. 120 873 883 2016 10.1016/j.funbio.2016.04.00327268247 Search in Google Scholar

Bishayee A., Sethi G.: Bioactive natural products in cancer prevention and therapy: Progress and promise. Semin. Cancer Biol. 41, 1–3 (2016) BishayeeA. SethiG. Bioactive natural products in cancer prevention and therapy: Progress and promise Semin. Cancer Biol. 41 1 3 2016 10.1016/j.semcancer.2016.08.00627565447 Search in Google Scholar

Brissow E.R., Soares M.A. i wsp.: 18-Des-hydroxy Cytochalasin: an antiparasitic compound of diaporthe phaseolorum-92C, an endophytic fungus isolated from Combretum lanceolatum Pohl ex Eichler. Parasitol. Res. 116, 1823–1830 (2017) BrissowE.R. SoaresM.A. 18-Des-hydroxy Cytochalasin: an antiparasitic compound of diaporthe phaseolorum-92C, an endophytic fungus isolated from Combretum lanceolatum Pohl ex Eichler Parasitol. Res 116 1823 1830 2017 10.1007/s00436-017-5451-928497228 Search in Google Scholar

Caputi L., O’Connor S.E. i wsp.: Missing enzymes in the bio-synthesis of the anticancer drug vinblastine in Madagascar periwinkle. Science, 360, 1235–1239 (2018) CaputiL. O’ConnorS.E. Missing enzymes in the bio-synthesis of the anticancer drug vinblastine in Madagascar periwinkle Science 360 1235 1239 2018 10.1126/science.aat410029724909 Search in Google Scholar

Castle B.T., McCubbin S., Prahl L.S., Bernens J.N., Sept D., Odde D.J.: Mechanisms of kinetic stabilization by the drugs paclitaxel and vinblastine. Mol. Biol. Cell. 28, 1238–1257 (2017) CastleB.T. McCubbinS. PrahlL.S. BernensJ.N. SeptD. OddeD.J. Mechanisms of kinetic stabilization by the drugs paclitaxel and vinblastine Mol. Biol. Cell. 28 1238 1257 2017 10.1091/mbc.e16-08-0567 Search in Google Scholar

Chen H., Daletos G., Okoye F., Lai D., Dai H., Proksch P.: A New cytotoxic cytochalasin from the endophytic fungus Trichoderma harzianum. Nat. Prod. Commun. 10, 585–587 (2015) ChenH. DaletosG. OkoyeF. LaiD. DaiH. ProkschP. A New cytotoxic cytochalasin from the endophytic fungus Trichoderma harzianum Nat. Prod. Commun 10 585 587 2015 10.1177/1934578X1501000412 Search in Google Scholar

Chen Z.M., Chen H.P., Li Y., Feng T., Liu J.K.: Cytochalasins from cultures of endophytic fungus Phoma multirostrata EA-12. J. Antibiot. (Tokyo), 68, 23–26 (2015) ChenZ.M. ChenH.P. LiY. FengT. LiuJ.K. Cytochalasins from cultures of endophytic fungus Phoma multirostrata EA-12 J. Antibiot. (Tokyo) 68 23 26 2015 10.1038/ja.2014.8724961709 Search in Google Scholar

Clarance P., Kim H.J. i wsp.: Green synthesis and characterization of gold nanoparticles using endophytic fungi Fusarium solani and its in-vitro anticancer and biomedical applications. Saudi J. Biol. Sci. 27, 706–712 (2020) ClaranceP. KimH.J. Green synthesis and characterization of gold nanoparticles using endophytic fungi Fusarium solani and its in-vitro anticancer and biomedical applications Saudi J. Biol. Sci. 27 706 712 2020 10.1016/j.sjbs.2019.12.026699786532210692 Search in Google Scholar

Cragg G.M., Newman D.J.: Natural products as sources of anti-cancer agents: Current approaches and perspectives (w) Natural products as source of molecules with therapeutic potential, red.: Valdir Cechinel Filho, Springer International Publishing, 2018, s. 309–331 CraggG.M. NewmanD.J. Natural products as sources of anti-cancer agents: Current approaches and perspectives (w) Natural products as source of molecules with therapeutic potential red.: Valdir Cechinel Filho, Springer International Publishing 2018 309 331 10.1007/978-3-030-00545-0_8 Search in Google Scholar

Cremasco M.A., Hritzko B.J., Linda Wang N.H.: Experimental purification of paclitaxel from a complex mixture of taxanes using a simulated moving bed. Brazilian J. Chem. Eng. 26, 207–218 (2009) CremascoM.A. HritzkoB.J. Linda WangN.H. Experimental purification of paclitaxel from a complex mixture of taxanes using a simulated moving bed Brazilian J. Chem. Eng. 26 207 218 2009 10.1590/S0104-66322009000100020 Search in Google Scholar

Das A., Rahman M.I., Ferdous A.S., Amin A., Rahman M.M., Nahar N., Uddin M.A., Islam M.R., Khan H.: An endophytic Basidiomycete, Grammothele lineata, isolated from Corchorus olitorius, produces paclitaxel that shows cytotoxicity. PLoS One, 12, e0178612 (2017) DasA. RahmanM.I. FerdousA.S. AminA. RahmanM.M. NaharN. UddinM.A. IslamM.R. KhanH. An endophytic Basidiomycete, Grammothele lineata, isolated from Corchorus olitorius, produces paclitaxel that shows cytotoxicity PLoS One 12 e0178612 2017 10.1371/journal.pone.0178612547951728636663 Search in Google Scholar

Degambada K.D., Kumara P.A.A.S.P., Salim N., Abeysekera A.M.: Diaporthe sp. F18; a new source of camptothecin producing endophytic fungus from Nothapodytes nimmoniana growing in Sri Lanka producing endophytic fungus from Nothapodytes. Nat. Prod. Res. DOI: 10.1080/14786419.2021.1946535 (2021) DegambadaK.D. KumaraP.A.A.S.P. SalimN. AbeysekeraA.M. Diaporthe sp. F18; a new source of camptothecin producing endophytic fungus from Nothapodytes nimmoniana growing in Sri Lanka producing endophytic fungus from Nothapodytes Nat. Prod. Res. 10.1080/14786419.2021.1946535 2021 34212791 Apri DOISearch in Google Scholar

Dhakshinamoorthy M., Kilavan Packiam K., Kumar P.S., Saravanakumar T.: Endophytic fungus Diaporthe caatingaensis MT192326 from Buchanania axillaris: An indicator to produce biocontrol agents in plant protection. Environ. Res. 197, 111147 (2021) DhakshinamoorthyM. Kilavan PackiamK. KumarP.S. SaravanakumarT. Endophytic fungus Diaporthe caatingaensis MT192326 from Buchanania axillaris: An indicator to produce biocontrol agents in plant protection Environ. Res. 197 111147 2021 10.1016/j.envres.2021.11114733844965 Search in Google Scholar

Dhakshinamoorthy M., Ponnusamy S.K., Nyayiru Kannaian U.P., Srinivasan B., Shankar S.N., Kilavan Packiam K.: Plant-microbe interactions implicated in the production of camptothecin – An anticancer biometabolite from Phyllosticta elongata MH458897 a novel endophytic strain isolated from medicinal plant of Western Ghats of India. Environ. Res. 201, 111564 (2021) DhakshinamoorthyM. PonnusamyS.K. Nyayiru KannaianU.P. SrinivasanB. ShankarS.N. Kilavan PackiamK. Plant-microbe interactions implicated in the production of camptothecin – An anticancer biometabolite from Phyllosticta elongata MH458897 a novel endophytic strain isolated from medicinal plant of Western Ghats of India Environ. Res. 201 111564 2021 10.1016/j.envres.2021.11156434228950 Search in Google Scholar

Dutta S., Mahalanobish S., Saha S., Ghosh S., Sil P.C.: Natural products: An upcoming therapeutic approach to cancer. Food Chem. Toxicol. 128, 240–255 (2019) DuttaS. MahalanobishS. SahaS. GhoshS. SilP.C. Natural products: An upcoming therapeutic approach to cancer Food Chem. Toxicol 128 240 255 2019 10.1016/j.fct.2019.04.01230991130 Search in Google Scholar

El-Sayed A.S., El Sayed M.T., Nada H.S., Hassan A.E., Yousef E.K.: Production and characterization of taxol as anti-cancer agent from Aspergillus terreus. J. Pure. Appl. Microbiol. 13, 2055–2063 (2019) El-SayedA.S. El SayedM.T. NadaH.S. HassanA.E. YousefE.K. Production and characterization of taxol as anti-cancer agent from Aspergillus terreus J. Pure. Appl. Microbiol. 13 2055 2063 2019 10.22207/JPAM.13.4.17 Search in Google Scholar

El-Sayed E.R.: Discovery of the anticancer drug vinblastine from the endophytic Alternaria alternata and yield improvement by gamma irradiation mutagenesis. J. Appl. Microbiol. 131, 2886–2898 (2021) El-SayedE.R. Discovery of the anticancer drug vinblastine from the endophytic Alternaria alternata and yield improvement by gamma irradiation mutagenesis J. Appl. Microbiol. 131 2886 2898 2021 10.1111/jam.1516934062037 Search in Google Scholar

El-Sayed E.S.R., Zaki A.G., Ahmed A.S., Ismaiel A.A.: Production of the anticancer drug taxol by the endophytic fungus Epicoccum nigrum TXB502: enhanced production by gamma irradiation mutagenesis and immobilization technique. Appl. Microbiol. Biotechnol. 104, 1–13 (2020) El-SayedE.S.R. ZakiA.G. AhmedA.S. IsmaielA.A. Production of the anticancer drug taxol by the endophytic fungus Epicoccum nigrum TXB502: enhanced production by gamma irradiation mutagenesis and immobilization technique Appl. Microbiol. Biotechnol. 104 1 13 2020 10.1007/s00253-020-10712-x32617617 Search in Google Scholar

Evidente A., Kornienko A., Cimmino A., Andolfi A., Lefranc F., Mathieu V., Kiss R.: Fungal metabolites with anticancer activity. Nat. Prod. Rep. 31, 617–627 (2014) EvidenteA. KornienkoA. CimminoA. AndolfiA. LefrancF. MathieuV. KissR. Fungal metabolites with anticancer activity Nat. Prod. Rep. 31 617 627 2014 10.1039/C3NP70078J24651312 Search in Google Scholar

Ferlay J., Colombet M., Soerjomataram I., Parkin D.M., Piñeros M., Znaor A., Bray F.: Cancer statistics for the year 2020: An overview. Int. J. Cancer. 149, 778–789 (2021) FerlayJ. ColombetM. SoerjomataramI. ParkinD.M. PiñerosM. ZnaorA. BrayF. Cancer statistics for the year 2020: An overview Int. J. Cancer. 149 778 789 2021 10.1002/ijc.3358833818764 Search in Google Scholar

Gauchan D.P., Vélëz H., Acharya A., Östman J.R., Lundén K., Elfstrand M., García-Gil M.R.: Annulohypoxylon sp. strain MUS1, an endophytic fungus isolated from Taxus wallichiana Zucc., produces taxol and other bioactive metabolites. Biotech. 11, 1–16 (2021) GauchanD.P. VélëzH. AcharyaA. ÖstmanJ.R. LundénK. ElfstrandM. García-GilM.R. Annulohypoxylon sp. strain MUS1, an endophytic fungus isolated from Taxus wallichiana Zucc., produces taxol and other bioactive metabolites Biotech 11 1 16 2021 10.1007/s13205-021-02693-z792575933747702 Search in Google Scholar

Gill H., Vasundhara M.: Isolation of taxol producing endophytic fungus Alternaria brassicicola from non-Taxus medicinal plant Terminalia arjuna. World J. Microbiol. Biotechnol. 35, 74 (2019) GillH. VasundharaM. Isolation of taxol producing endophytic fungus Alternaria brassicicola from non-Taxus medicinal plant Terminalia arjuna World J. Microbiol. Biotechnol. 35 74 2019 10.1007/s11274-019-2651-831053977 Search in Google Scholar

Gokul Raj K., Manikandan R., Arulvasu C., Pandi M.: Anti-proliferative effect of fungal taxol extracted from Cladosporium oxysporum against human pathogenic bacteria and human colon cancer cell line HCT 15. Spectrochim. Acta – Part A Mol. Biomol. Spectrosc. 138, 667–674 (2015) Gokul RajK. ManikandanR. ArulvasuC. PandiM. Anti-proliferative effect of fungal taxol extracted from Cladosporium oxysporum against human pathogenic bacteria and human colon cancer cell line HCT 15 Spectrochim. Acta – Part A Mol. Biomol. Spectrosc. 138 667 674 2015 10.1016/j.saa.2014.11.03625544183 Search in Google Scholar

Gouda, S.; Das, G.; Sen, S.K.; Shin, H.S.; Patra, J.K. Endophytes: A treasure house of bioactive compounds of medicinal importance. Front. Microbiol. 7, 1–8 (2016) GoudaS. DasG. SenS.K. ShinH.S. PatraJ.K. Endophytes: A treasure house of bioactive compounds of medicinal importance Front. Microbiol. 7 1 8 2016 10.3389/fmicb.2016.01538504114127746767 Search in Google Scholar

Gurgul A., Lityńska A.: Substancje pochodzenia roślinnego w terapii nowotworów. Postępy Fitoter. 18, 203–208 (2017) GurgulA. LityńskaA. Substancje pochodzenia roślinnego w terapii nowotworów Postępy Fitoter. 18 203 208 2017 10.25121/PF.2017.18.3.203 Search in Google Scholar

Hardoim P.R., van Overbeek L.S., Berg G., Pirttilä A.M., Compant S., Campisano A., Döring M., Sessitsch A.: The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol. Mol. Biol. Rev. 79, 293–320 (2015) HardoimP.R. van OverbeekL.S. BergG. PirttiläA.M. CompantS. CampisanoA. DöringM. SessitschA. The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes Microbiol. Mol. Biol. Rev. 79 293 320 2015 10.1128/MMBR.00050-14448837126136581 Search in Google Scholar

He Q., Zeng Q., Shao Y., Zhou H., Li T., Song F., Liu W.: Anti-cervical cancer activity of secondary metabolites of endo phytic fungi from Ginkgo biloba. Cancer Biomarkers, 28, 371–379 (2020) HeQ. ZengQ. ShaoY. ZhouH. LiT. SongF. LiuW. Anti-cervical cancer activity of secondary metabolites of endo phytic fungi from Ginkgo biloba Cancer Biomarkers 28 371 379 2020 10.3233/CBM-19046232508319 Search in Google Scholar

Hemamalini V., Mukesh Kumar D.J., Immaculate A., Rebecca N., Srimathi S., Muthumary J., Kalaichelvan P.T.: Isolation and characterization of taxol producing endophytic Phoma sp. from Calotropis gigantea and its anti-proliferative studies. J. Acad. Ind. Res. 3, 645 (2015) HemamaliniV. Mukesh KumarD.J. ImmaculateA. RebeccaN. SrimathiS. MuthumaryJ. KalaichelvanP.T. Isolation and characterization of taxol producing endophytic Phoma sp. from Calotropis gigantea and its anti-proliferative studies J. Acad. Ind. Res. 3 645 2015 Search in Google Scholar

Hridoy M., Mazid M.A. i wsp.: Putative anticancer compounds from plant-derived endophytic fungi: a review. Mol. 27, 296 (2022) HridoyM. MazidM.A. Putative anticancer compounds from plant-derived endophytic fungi: a review Mol. 27 296 2022 10.3390/molecules27010296874637935011527 Search in Google Scholar

Ismaiel A.A., Ahmed A.S., Hassan I.A., El-Sayed E.S.R., Karam El-Din A.Z.A.: Production of paclitaxel with anticancer activity by two local fungal endophytes, Aspergillus fumigatus and Alter-naria tenuissima. Appl. Microbiol. Biotechnol., 101, 5831–5846 (2017) IsmaielA.A. AhmedA.S. HassanI.A. El-SayedE.S.R. Karam El-DinA.Z.A. Production of paclitaxel with anticancer activity by two local fungal endophytes, Aspergillus fumigatus and Alter-naria tenuissima Appl. Microbiol. Biotechnol. 101 5831 5846 2017 10.1007/s00253-017-8354-x28612104 Search in Google Scholar

Jia M., Chen L., Xin H.L., Zheng C.J., Rahman K., Han T., Qin L.P.: A friendly relationship between endophytic fungi and medicinal plants: A systematic review. Front. Microbiol. 7, 906 (2016) JiaM. ChenL. XinH.L. ZhengC.J. RahmanK. HanT. QinL.P. A friendly relationship between endophytic fungi and medicinal plants: A systematic review Front. Microbiol. 7 906 2016 10.3389/fmicb.2016.00906489946127375610 Search in Google Scholar

Jouda J.B., Tamokou J. de D., Mbazoa C.D., Douala-Meli C., Sarkar P., Bag P.K., Wandji J.: Antibacterial and cytotoxic cytochalasins from the endophytic fungus Phomopsis sp. harbored in Garcinia kola (Heckel) nut. BMC Complement. Altern. Med. 16, 1–9 (2016) JoudaJ.B. TamokouJ. de D. MbazoaC.D. Douala-MeliC. SarkarP. BagP.K. WandjiJ. Antibacterial and cytotoxic cytochalasins from the endophytic fungus Phomopsis sp. harbored in Garcinia kola (Heckel) nut BMC Complement. Altern. Med. 16 1 9 2016 10.1186/s12906-016-1454-9510965827842536 Search in Google Scholar

Kai G., Chao, Liyuan W., Liqiang G., Lijie Z.C., Ni X.: Biosyn-thesis and biotechnological production of anti-cancer drug camptothecin. Phytochem. Rev. 14, 525–539 (2015) KaiG. Chao LiyuanW. LiqiangG. LijieZ.C. NiX. Biosyn-thesis and biotechnological production of anti-cancer drug camptothecin Phytochem. Rev 14 525 539 2015 10.1007/s11101-015-9405-5 Search in Google Scholar

Kasaei A., Mobini-Dehkordi M., Mahjoubi F., Saffar B.: Isolation of taxol-producing endophytic fungi from iranian yew through novel molecular approach and their effects on human breast cancer cell line. Curr. Microbiol. 74, 702–709 (2017) KasaeiA. Mobini-DehkordiM. MahjoubiF. SaffarB. Isolation of taxol-producing endophytic fungi from iranian yew through novel molecular approach and their effects on human breast cancer cell line Curr. Microbiol. 74 702 709 2017 10.1007/s00284-017-1231-028332162 Search in Google Scholar

Kaur J., Singh A., Pathak T., Kumar K.: Role of PGRs in Anticancer Alkaloids (Vincristine and Vinblastine) Production. Cathar. Roseus Curr. Res. Futur. Prospect. 309–319 (2017) KaurJ. SinghA. PathakT. KumarK. Role of PGRs in Anticancer Alkaloids (Vincristine and Vinblastine) Production Cathar. Roseus Curr. Res. Futur. Prospect. 309 319 2017 10.1007/978-3-319-51620-2_12 Search in Google Scholar

Khalifa S.A.M., Göransson U., i wsp.: Marine natural products: a source of novel anticancer drugs. Mar. Drugs. 17, 491 (2019) KhalifaS.A.M. GöranssonU. Marine natural products: a source of novel anticancer drugs Mar. Drugs. 17 491 2019 10.3390/md17090491678063231443597 Search in Google Scholar

Khare E., Mishra J., Arora N.K.: Multifaceted interactions between endophytes and plant: developments and prospects. Front. Microbiol. 9, 2732 (2018) KhareE. MishraJ. AroraN.K. Multifaceted interactions between endophytes and plant: developments and prospects Front. Microbiol. 9 2732 2018 10.3389/fmicb.2018.02732624944030498482 Search in Google Scholar

Kinghorn A.D., Stockwell B.R. i wsp.: Discovery of anticancer agents of diverse natural origin. Anticancer Res. 36, 5623–5637 (2016) KinghornA.D. StockwellB.R. Discovery of anticancer agents of diverse natural origin Anticancer Res. 36 5623 5637 2016 10.21873/anticanres.11146509870327793884 Search in Google Scholar

Kumar P., Singh B., Thakur V., Thakur A., Thakur N., Pandey D., Chand D.: Hyper-production of taxol from Aspergillus fumigatus, an endophytic fungus isolated from Taxus sp. of the Northern Himalayan region. Biotechnol. Rep. 24, e00395 (2019) KumarP. SinghB. ThakurV. ThakurA. ThakurN. PandeyD. ChandD. Hyper-production of taxol from Aspergillus fumigatus, an endophytic fungus isolated from Taxus sp. of the Northern Himalayan region Biotechnol. Rep. 24 e00395 2019 10.1016/j.btre.2019.e00395688168131799144 Search in Google Scholar

Liang Z., Zhang J., Zhang X., Li J., Zhang X., Zhao C.: Endophytic fungus from Sinopodophyllum emodi (Wall.) Ying that produces podophyllotoxin. J. Chromatogr. Sci. 54, 175–178 (2016) LiangZ. ZhangJ. ZhangX. LiJ. ZhangX. ZhaoC. Endophytic fungus from Sinopodophyllum emodi (Wall.) Ying that produces podophyllotoxin J. Chromatogr. Sci. 54 175 178 2016 Search in Google Scholar

Ma K.L., Dong S.H., Li H.Y., Wei W.J., Tu Y.Q., Gao K.: Cyto chalasins from Xylaria sp. CFL5, an endophytic fungus of Cephalotaxus fortunei. Nat. Products Bioprospect. 11, 87–98 (2021) MaK.L. DongS.H. LiH.Y. WeiW.J. TuY.Q. GaoK. Cyto chalasins from Xylaria sp. CFL5, an endophytic fungus of Cephalotaxus fortunei Nat. Products Bioprospect. 11 87 98 2021 10.1007/s13659-020-00279-5793332033146865 Search in Google Scholar

Ma Y., Wu X., Xiu Z., Liu X., Huang B., Hu L., Liu J., Zhou Z., Tang X.: Cytochalasin H isolated from mangrove-derived endophytic fungus induces apoptosis and inhibits migration in lung cancer cells. Oncol. Rep. 39, 2899–2905 (2018) MaY. WuX. XiuZ. LiuX. HuangB. HuL. LiuJ. ZhouZ. TangX. Cytochalasin H isolated from mangrove-derived endophytic fungus induces apoptosis and inhibits migration in lung cancer cells Oncol. Rep. 39 2899 2905 2018 10.3892/or.2018.634729620283 Search in Google Scholar

Martino E., Della Volpe S., Terribile E., Benetti E., Sakaj M., Centamore A., Sala A., Collina S.: The long story of camptothecin: From traditional medicine to drugs. Bioorganic Med. Chem. Lett. 27, 701–707 (2017) MartinoE. Della VolpeS. TerribileE. BenettiE. SakajM. CentamoreA. SalaA. CollinaS. The long story of camptothecin: From traditional medicine to drugs Bioorganic Med. Chem. Lett. 27 701 707 2017 10.1016/j.bmcl.2016.12.08528073672 Search in Google Scholar

Miller K.D., Siegel R.L., Lin C.C., Mariotto A.B., Kramer J.L., Rowland J.H., Stein K.D., Alteri R., Jemal A.: Cancer treatment and survivorship statistics, 2016. CA. Cancer J. Clin. 66, 271–289 (2016) MillerK.D. SiegelR.L. LinC.C. MariottoA.B. KramerJ.L. RowlandJ.H. SteinK.D. AlteriR. JemalA. Cancer treatment and survivorship statistics, 2016 CA. Cancer J. Clin. 66 271 289 2016 10.3322/caac.2134927253694 Search in Google Scholar

Mohinudeen I.A.H.K., Kanumuri R., Soujanya K.N., Shaanker R.U., Rayala S.K., Srivastava S.: Sustainable production of camptothecin from an Alternaria sp. isolated from Nothapodytes nimmoniana. Sci. Rep. 11, 1478 (2021) MohinudeenI.A.H.K. KanumuriR. SoujanyaK.N. ShaankerR.U. RayalaS.K. SrivastavaS. Sustainable production of camptothecin from an Alternaria sp. isolated from Nothapodytes nimmoniana Sci. Rep. 11 1478 2021 10.1038/s41598-020-79239-5780941033446714 Search in Google Scholar

Musavi S.F., Dhavale A., Balakrishnan R.M.: Optimization and kinetic modeling of cell-associated camptothecin production from an endophytic Fusarium Oxysporum NFX06. Prep. Biochem. Biotechnol. 45, 158–172 (2015) MusaviS.F. DhavaleA. BalakrishnanR.M. Optimization and kinetic modeling of cell-associated camptothecin production from an endophytic Fusarium Oxysporum NFX06 Prep. Biochem. Biotechnol. 45 158 172 2015 10.1080/10826068.2014.90717724840354 Search in Google Scholar

Newman D.J., Cragg G.M.: Natural Products as Sources of New Drugs from 1981 to 2014. J. Nat. Prod. 79, 629–661 (2016) NewmanD.J. CraggG.M. Natural Products as Sources of New Drugs from 1981 to 2014 J. Nat. Prod. 79 629 661 2016 10.1021/acs.jnatprod.5b0105526852623 Search in Google Scholar

Okoye F.B.C., Nworu C.S., Debbab A., Esimone C.O., Proksch P.: Two new cytochalasins from an endophytic fungus, KL-1.1 isolated from Psidium guajava leaves. Phytochem. Lett. 14, 51–55 (2015) OkoyeF.B.C. NworuC.S. DebbabA. EsimoneC.O. ProkschP. Two new cytochalasins from an endophytic fungus, KL-1.1 isolated from Psidium guajava leaves Phytochem. Lett. 14 51 55 2015 10.1016/j.phytol.2015.09.004 Search in Google Scholar

Palem P.P.C., Kuriakose G.C., Jayabaskaran C.: Correction: An endophytic fungus, Talaromyces radicus, isolated from Catharanthus roseus, produces vincristine and vinblastine, which induce apoptotic cell death. PLoS One, 11, e0153111 (2016) PalemP.P.C. KuriakoseG.C. JayabaskaranC. Correction: An endophytic fungus, Talaromyces radicus, isolated from Catharanthus roseus, produces vincristine and vinblastine, which induce apoptotic cell death PLoS One 11 e0153111 2016 10.1371/journal.pone.0153111482148327046169 Search in Google Scholar

Parthasarathy R., Shanmuganathan R., Pugazhendhi A.: Vinblastine production by the endophytic fungus Curvularia verruculosa from the leaves of Catharanthus roseus and its in vitro cytotoxicity against HeLa cell line. Anal. Biochem. 593, 113530 (2020) ParthasarathyR. ShanmuganathanR. PugazhendhiA. Vinblastine production by the endophytic fungus Curvularia verruculosa from the leaves of Catharanthus roseus and its in vitro cytotoxicity against HeLa cell line Anal. Biochem 593 113530 2020 10.1016/j.ab.2019.11353031794703 Search in Google Scholar

Paul S., Bhagobaty R.K., Nihalani M.C., Joshi S.R.: Characterization of oleaginous endophytic fungi of biodiesel plants as potential biofuel minifactories. Biomass and Bioenergy, 142, 105750 (2020) PaulS. BhagobatyR.K. NihalaniM.C. JoshiS.R. Characterization of oleaginous endophytic fungi of biodiesel plants as potential biofuel minifactories Biomass and Bioenergy 142 105750 2020 10.1016/j.biombioe.2020.105750 Search in Google Scholar

Peng X.G., Liu J., Gao Y., Cheng F., Chang J.L., Chen J., Duan F.F., Ruan H.L.: Pchaeglobolactone A, spiropchaeglobosin A, and pchaeglobosals A and B: four rearranged cytochalasans from Chaetomium globosum P2-2-2. Org. Lett. 22, 9665–9669 (2020) PengX.G. LiuJ. GaoY. ChengF. ChangJ.L. ChenJ. DuanF.F. RuanH.L. Pchaeglobolactone A, spiropchaeglobosin A, and pchaeglobosals A and B: four rearranged cytochalasans from Chaetomium globosum P2-2-2 Org. Lett. 22 9665 9669 2020 10.1021/acs.orglett.0c0362333270452 Search in Google Scholar

Peng X., Duan F., He Y., Gao Y., Chen J., Chang J., Ruan H.: Ergocytochalasin A, a polycyclic merocytochalasan from an endophytic fungus Phoma multirostrata XJ-2-1. Org. Biomol. Chem. 18, 4056–4062 (2020) PengX. DuanF. HeY. GaoY. ChenJ. ChangJ. RuanH. Ergocytochalasin A, a polycyclic merocytochalasan from an endophytic fungus Phoma multirostrata XJ-2-1 Org. Biomol. Chem 18 4056 4062 2020 10.1039/D0OB00701C32412573 Search in Google Scholar

Puri S.C., Verma V., Amna T., Qazi G.N., Spiteller M.: An endophytic fungus from Nothapodytes f oetida that produces camp-tothecin. J. Nat. Prod. 68, 1717–1719 (2005) PuriS.C. VermaV. AmnaT. QaziG.N. SpitellerM. An endophytic fungus from Nothapodytes f oetida that produces camp-tothecin J. Nat. Prod 68 1717 1719 2005 10.1021/np050280216378360 Search in Google Scholar

Qader M., Zaman K.A.U., Hu Z., Wang C., Wu X., Cao S.: Aspochalasin H1: a new cyclic aspochalasin from hawaiian plant-associated endophytic fungus Aspergillus sp. FT1307. Molecules, 26, 4239 (2021) QaderM. ZamanK.A.U. HuZ. WangC. WuX. CaoS. Aspochalasin H1: a new cyclic aspochalasin from hawaiian plant-associated endophytic fungus Aspergillus sp. FT1307 Molecules 26 4239 2021 10.3390/molecules26144239830793434299514 Search in Google Scholar

Qiao W., Ling F., Yu L., Huang Y., Wang T.: Enhancing taxol production in a novel endophytic fungus, Aspergillus aculeatinus Tax-6, isolated from Taxus chinensis var. mairei. Fungal Biol. 121, 1037–1044 (2017) QiaoW. LingF. YuL. HuangY. WangT. Enhancing taxol production in a novel endophytic fungus, Aspergillus aculeatinus Tax-6, isolated from Taxus chinensis var. mairei Fungal Biol 121 1037 1044 2017 10.1016/j.funbio.2017.08.01129122175 Search in Google Scholar

Ran X., Zhang G., Li S., Wang J.: Characterization and anti-tumor activity of camptothecin from endophytic fungus Fusarium solani isolated from Camptotheca acuminate. Afr. Health Sci. 17, 566–574 (2017) RanX. ZhangG. LiS. WangJ. Characterization and anti-tumor activity of camptothecin from endophytic fungus Fusarium solani isolated from Camptotheca acuminate Afr. Health Sci. 17 566 574 2017 10.4314/ahs.v17i2.34563704529062355 Search in Google Scholar

Rana K.L., Kour D., Sheikh I., Dhiman A., Yadav N., Yadav A.N., Rastegari A.A., Singh K., Saxena A.K.: Endophytic fungi: bio-diversity, ecological significance, and potential industrial applications (w) Recent Advancement in White Biotechnology Through Fungi, red.: Yadav A.N., Mishra S., Singh S., Gupta A. Springer, Cham, 2019, s. 1–62 RanaK.L. KourD. SheikhI. DhimanA. YadavN. YadavA.N. RastegariA.A. SinghK. SaxenaA.K. Endophytic fungi: bio-diversity, ecological significance, and potential industrial applications (w) Recent Advancement in White Biotechnology Through Fungi red.: YadavA.N. MishraS. SinghS. GuptaA. Springer, Cham 2019 1 62 10.1007/978-3-030-10480-1_1 Search in Google Scholar

Rayan A., Raiyn J., Falah M.: Nature is the best source of anti-cancer drugs: Indexing natural products for their anticancer bioactivity. PLoS One, 12, e0187925 (2017) RayanA. RaiynJ. FalahM. Nature is the best source of anti-cancer drugs: Indexing natural products for their anticancer bioactivity PLoS One 12 e0187925 2017 10.1371/journal.pone.0187925567959529121120 Search in Google Scholar

Religioni U.: Cancer incidence and mortality in Poland. Clin. Epidemiol. Glob. Heal. 8, 329–334 (2020) ReligioniU. Cancer incidence and mortality in Poland Clin. Epidemiol. Glob. Heal. 8 329 334 2020 10.1016/j.cegh.2019.12.014 Search in Google Scholar

Salehi M., Moieni A., Safaie N.: Elicitors derived from hazel (Cory lus avellana L.) cell suspension culture enhance growth and paclitaxel production of Epicoccum nigrum. Sci. Rep. 8, 12053 (2018) SalehiM. MoieniA. SafaieN. Elicitors derived from hazel (Cory lus avellana L.) cell suspension culture enhance growth and paclitaxel production of Epicoccum nigrum Sci. Rep. 8 12053 2018 10.1038/s41598-018-29762-3608996330104672 Search in Google Scholar

Sarkar S., Dey A., Kumar V., Batiha G.E.S., El-Esawi M.A., Tomczyk M., Ray P.: Fungal endophyte: an interactive endosymbiont with the capability of modulating host physiology in myriad ways. Front. Plant Sci. 12, 1780 (2021) SarkarS. DeyA. KumarV. BatihaG.E.S. El-EsawiM.A. TomczykM. RayP. Fungal endophyte: an interactive endosymbiont with the capability of modulating host physiology in myriad ways Front. Plant Sci. 12 1780 2021 10.3389/fpls.2021.701800851475634659281 Search in Google Scholar

Sharma N., Kushwaha M., Arora D., Jain S., Singamaneni V., Sharma S., Shankar R., Bhushan S., Gupta P., Jaglan S.: New cytochalasin from Rosellinia sanctae-cruciana, an endophytic fungus of Albizia lebbeck. J Appl Microbiol. 125, 111–120 (2018) SharmaN. KushwahaM. AroraD. JainS. SingamaneniV. SharmaS. ShankarR. BhushanS. GuptaP. JaglanS. New cytochalasin from Rosellinia sanctae-cruciana, an endophytic fungus of Albizia lebbeck J Appl Microbiol 125 111 120 2018 10.1111/jam.1376429573314 Search in Google Scholar

Siegel R.L., Miller K.D., Fuchs H.E., Jemal A.: Cancer statistics, 2022. CA. Cancer J. Clin. 72, 7–33 (2022) SiegelR.L. MillerK.D. FuchsH.E. JemalA. Cancer statistics, 2022 CA. Cancer J. Clin. 72 7 33 2022 10.3322/caac.2170835020204 Search in Google Scholar

Singh M., Kumar A., Singh R., Pandey K.D.: Endophytic bacteria: a new source of bioactive compounds. 3 Biotech. 7, 315 (2017) SinghM. KumarA. SinghR. PandeyK.D. Endophytic bacteria: a new source of bioactive compounds 3 Biotech 7 315 2017 10.1007/s13205-017-0942-z559937828955612 Search in Google Scholar

Somjaipeng S., Medina A., Kwaśna H., Ordaz Ortiz J., Magan N.: Isolation, identification, and ecology of growth and taxol production by an endophytic strain of Paraconiothyrium varia-bile from English yew trees (Taxus baccata). Fungal Biol. 119, 1022–1031 (2015) SomjaipengS. MedinaA. KwaśnaH. Ordaz OrtizJ. MaganN. Isolation, identification, and ecology of growth and taxol production by an endophytic strain of Paraconiothyrium varia-bile from English yew trees (Taxus baccata) Fungal Biol. 119 1022 1031 2015 10.1016/j.funbio.2015.07.00726466877 Search in Google Scholar

Somjaipeng S., Medina A., Magan N.: Environmental stress and elicitors enhance taxol production by endophytic strains of Paraconiothyrium variabile and Epicoccum nigrum. Enzyme Microb. Technol. 90, 69–75 (2016) SomjaipengS. MedinaA. MaganN. Environmental stress and elicitors enhance taxol production by endophytic strains of Paraconiothyrium variabile and Epicoccum nigrum Enzyme Microb. Technol. 90 69 75 2016 10.1016/j.enzmictec.2016.05.00227241294 Search in Google Scholar

Subban K., Subramani R., Madambakkam Srinivasan V.P., Johnpaul M., Chelliah J.: Salicylic acid as an effective elicitor for improved taxol production in endophytic fungus Pestalotiopsis microspora. PLoS One, 14, e0212736 (2019) SubbanK. SubramaniR. Madambakkam SrinivasanV.P. JohnpaulM. ChelliahJ. Salicylic acid as an effective elicitor for improved taxol production in endophytic fungus Pestalotiopsis microspora PLoS One 14 e0212736 2019 10.1371/journal.pone.0212736638650130794656 Search in Google Scholar

Tan X., Zhou Y., Zhou X., Xia X., Wei Y., He L., Tang H., Yu L.: Diversity and bioactive potential of culturable fungal endophytes of Dysosma versipellis; A rare medicinal plant endemic to China. Sci. Rep. 8, 5929 (2018) TanX. ZhouY. ZhouX. XiaX. WeiY. HeL. TangH. YuL. Diversity and bioactive potential of culturable fungal endophytes of Dysosma versipellis; A rare medicinal plant endemic to China Sci. Rep. 8 5929 2018 10.1038/s41598-018-24313-2589755929651009 Search in Google Scholar

Trendowski M.: Using cytochalasins to improve current chemothe rapeuticapproaches.Anticancer. Agents Med. Chem. 15, 327 (2015) TrendowskiM. Using cytochalasins to improve current chemothe rapeuticapproaches Anticancer. Agents Med. Chem. 15 327 2015 10.2174/1871520614666141016164335448539425322987 Search in Google Scholar

Tyagi G., Kapoor N., Chandra G., Gambhir L.: Cure lies in nature: medicinal plants and endophytic fungi in curbing cancer. 3 Biotech. 11, 1–24 (2021) TyagiG. KapoorN. ChandraG. GambhirL. Cure lies in nature: medicinal plants and endophytic fungi in curbing cancer 3 Biotech 11 1 24 2021 10.1007/s13205-021-02803-x811643133996375 Search in Google Scholar

Uzma F., Siddaiah C.N. i wsp.: Endophytic fungi-alternative sources of cytotoxic compounds: A review. Front. Pharmacol. 9, 309 (2018) UzmaF. SiddaiahC.N. Endophytic fungi-alternative sources of cytotoxic compounds: A review Front. Pharmacol 9 309 2018 10.3389/fphar.2018.00309593220429755344 Search in Google Scholar

Vasundhara M., Kumar A., Reddy M.S.: Molecular approaches to screen bioactive compounds from endophytic fungi. Front. Microbiol. 7, 1774 (2016) VasundharaM. KumarA. ReddyM.S. Molecular approaches to screen bioactive compounds from endophytic fungi Front. Microbiol 7 1774 2016 10.3389/fmicb.2016.01774 Search in Google Scholar

Wall M.E.: Camptothecin and taxol: discovery to clinic. Med. Res. Rev. 18, 299–314 (1998) WallM.E. Camptothecin and taxol: discovery to clinic Med. Res. Rev. 18 299 314 1998 10.1002/(SICI)1098-1128(199809)18:5<299::AID-MED2>3.0.CO;2-O Search in Google Scholar

Wang L., Yu Z., Guo X., Huang J.P., Yan Y., Huang S.X., Yang J.: Bisaspochalasins D and E: two heterocycle-fused cytochalasan homodimers from an endophytic Aspergillus flavipes. J. Org. Chem. 86, 11198–11205 (2021) WangL. YuZ. GuoX. HuangJ.P. YanY. HuangS.X. YangJ. Bisaspochalasins D and E: two heterocycle-fused cytochalasan homodimers from an endophytic Aspergillus flavipes J. Org. Chem. 86 11198 11205 2021 10.1021/acs.joc.1c00425 Search in Google Scholar

Wang T., Ma Y.X., Ye Y.H., Zheng H.M., Zhang B.W., Zhang E.H.: Screening and identification of endophytic fungi producing podophyllotoxin compounds in Sinopodophyllum hexandrum stems. Chinese J. Exp. Trad. Med. Formul. 39, 402–408 (2017) WangT. MaY.X. YeY.H. ZhengH.M. ZhangB.W. ZhangE.H. Screening and identification of endophytic fungi producing podophyllotoxin compounds in Sinopodophyllum hexandrum stems Chinese J. Exp. Trad. Med. Formul 39 402 408 2017 Search in Google Scholar

Wang W.X., Li Z.H., Ai H.L., Li J., He J., Zheng Y.S., Feng T., Liu J.K.: Cytotoxic 19,20-epoxycytochalasans from endophytic fungus Xylaria cf. curta. Fitoterapia, 137, (2019) WangW.X. LiZ.H. AiH.L. LiJ. HeJ. ZhengY.S. FengT. LiuJ.K. Cytotoxic 19,20-epoxycytochalasans from endophytic fungus Xylaria cf. curta Fitoterapia 137 2019 10.1016/j.fitote.2019.104253 Search in Google Scholar

Wheeler N.C., Jech K., Masters S., Brobst S.W., Alvarado A.B., Hoover A.J., Snader K.M.: Effects of genetic, epigenetic, and environmental factors on taxol content in Taxus brevifolia and related species. J. Nat. Prod. 55, 432–440 (1992) WheelerN.C. JechK. MastersS. BrobstS.W. AlvaradoA.B. HooverA.J. SnaderK.M. Effects of genetic, epigenetic, and environmental factors on taxol content in Taxus brevifolia and related species J. Nat. Prod 55 432 440 1992 10.1021/np50082a005 Search in Google Scholar

Xin X.Q., Chen Y., Zhang H., Li Y., Yang M.H., Kong L.Y.: Cytotoxic seco-cytochalasins from an endophytic Aspergillus sp. harbored in Pinellia ternata tubers. Fitoterapia, 132, 53–59 (2019) XinX.Q. ChenY. ZhangH. LiY. YangM.H. KongL.Y. Cytotoxic seco-cytochalasins from an endophytic Aspergillus sp. harbored in Pinellia ternata tubers Fitoterapia 132 53 59 2019 10.1016/j.fitote.2018.11.010 Search in Google Scholar

Yang X., Wu P., Xue J., Li H., Wei X.: Cytochalasans from endophytic fungus Diaporthe sp. SC-J0138. Fitoterapia, 145, 104611 (2020) YangX. WuP. XueJ. LiH. WeiX. Cytochalasans from endophytic fungus Diaporthe sp. SC-J0138 Fitoterapia 145 104611 2020 10.1016/j.fitote.2020.104611 Search in Google Scholar

Yuan S., Gopal J.V., Ren S., Chen L., Liu L., Gao Z.: Anticancer fungal natural products: mechanisms of action and biosynthesis. Eur. J. Med. Chem. 202, 112502 (2020) YuanS. GopalJ.V. RenS. ChenL. LiuL. GaoZ. Anticancer fungal natural products: mechanisms of action and biosynthesis Eur. J. Med. Chem. 202 112502 2020 10.1016/j.ejmech.2020.112502 Search in Google Scholar

Zafari D., Leylaiee S., Tajick M.A.: Isolation and identification of vinblastine from the fungus of Chaetomium globosum Cr95 isolated from Catharanthus roseus plant. Biol. J. Microorg. 8, 1–14 (2019) ZafariD. LeylaieeS. TajickM.A. Isolation and identification of vinblastine from the fungus of Chaetomium globosum Cr95 isolated from Catharanthus roseus plant Biol. J. Microorg. 8 1 14 2019 Search in Google Scholar

Zaiyou J., Hongsheng W., Ning W., Li M., Guifang X.: Isolation and identification of an endophytic fungus producing paclitaxel from Taxus wallichiana var mairei. Nutr. Hosp. 32, 2932–2937 (2015) ZaiyouJ. HongshengW. NingW. LiM. GuifangX. Isolation and identification of an endophytic fungus producing paclitaxel from Taxus wallichiana var mairei Nutr. Hosp 32 2932 2937 2015 Search in Google Scholar

Zaiyou J., Li M., Xiqiao H.: An endophytic fungus efficiently producing paclitaxel isolated from Taxus wallichiana var. mairei. Med. 96, e7406 (2017) ZaiyouJ. LiM. XiqiaoH. An endophytic fungus efficiently producing paclitaxel isolated from Taxus wallichiana var. mairei Med 96 e7406 2017 10.1097/MD.0000000000007406 Search in Google Scholar

Zhang X., Rakesh K.P., Shantharam C.S., Manukumar H.M., Asiri A.M., Marwani H.M., Qin H.L.: Podophyllotoxin derivatives as an excellent anticancer aspirant for future chemotherapy: A key current imminent needs. Bioorganic Med. Chem. 26, 340–355 (2018) ZhangX. RakeshK.P. ShantharamC.S. ManukumarH.M. AsiriA.M. MarwaniH.M. QinH.L. Podophyllotoxin derivatives as an excellent anticancer aspirant for future chemotherapy: A key current imminent needs Bioorganic Med. Chem 26 340 355 2018 10.1016/j.bmc.2017.11.026 Search in Google Scholar

Zhang Y.W., Kong X.Y., Wang J.H., Du G.H.: Vinblastine and Vincristine. Nat. Small Mol. Drugs from Plants, 41, 551–557 (2018) ZhangY.W. KongX.Y. WangJ.H. DuG.H. Vinblastine and Vincristine Nat. Small Mol. Drugs from Plants 41 551 557 2018 10.1007/978-981-10-8022-7_91 Search in Google Scholar

Zi C.T., Yang L., Xu F.Q., Dong F.W., Yang D., Li Y., Ding Z.T., Zhou J., Jiang Z.H., Hu J.M.: Synthesis and anticancer activity of dimeric podophyllotoxin derivatives. Drug Des. Devel. Ther. 12, 3393–3406 (2018) ZiC.T. YangL. XuF.Q. DongF.W. YangD. LiY. DingZ.T. ZhouJ. JiangZ.H. HuJ.M. Synthesis and anticancer activity of dimeric podophyllotoxin derivatives Drug Des. Devel. Ther. 12 3393 3406 2018 10.2147/DDDT.S167382618677230349193 Search in Google Scholar

Articoli consigliati da Trend MD

Pianifica la tua conferenza remota con Sciendo