This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Alalwani SM, Sierigk J, Herr C et al. (2010) The antimicrobial peptide LL-37 modulates the inflammatory and host defense response of human neutrophils. Eur J Immunol 40:1118–1126. https://doi.org/10.1002/eji.200939275AlalwaniSMSierigkJHerrC2010The antimicrobial peptide LL-37 modulates the inflammatory and host defense response of human neutrophilsEur J Immunol4011181126https://doi.org/10.1002/eji.200939275Search in Google Scholar
Alexandre-Ramos DS, Silva-Carvalho AÉ, Lacerda MG et al. (2018) LL-37 treatment on human peripheral blood mononuclear cells modulates immune response and promotes regulatory T-cells generation. Biomed Pharmacother 108:1584–1590. https://doi.org/10.1016/j.biopha.2018.10.014Alexandre-RamosDSSilva-CarvalhoAÉLacerdaMG2018LL-37 treatment on human peripheral blood mononuclear cells modulates immune response and promotes regulatory T-cells generationBiomed Pharmacother10815841590https://doi.org/10.1016/j.biopha.2018.10.014Search in Google Scholar
Al-Sabagh FS, Ghaima KK (2022) Synergistic effect of antimicrobial peptide LL-37 and ciprofloxacin against multidrug resistant Pseudomonas aeruginosa isolated from burn infections. Iraqi J Biotechnol 21:32–38.Al-SabaghFSGhaimaKK2022Synergistic effect of antimicrobial peptide LL-37 and ciprofloxacin against multidrug resistant Pseudomonas aeruginosa isolated from burn infectionsIraqi J Biotechnol213238Search in Google Scholar
Amrein K, Schnedl C, Holl A et al. (2014) Effect of high-dose vitamin D3 on hospital length of stay in critically ill patients with vitamin D deficiency: The VITdAL-ICU randomized clinical trial. JAMA 312: 1520–1530. https://doi.org/10.1001/jama.2014.13204AmreinKSchnedlCHollA2014Effect of high-dose vitamin D3 on hospital length of stay in critically ill patients with vitamin D deficiency: The VITdAL-ICU randomized clinical trialJAMA31215201530https://doi.org/10.1001/jama.2014.13204Search in Google Scholar
Ashoor TM, Abd Elazim AEH, Mustafa ZAE et al. (2024) Outcomes of high-dose versus low-dose vitamin D on prognosis of sepsis requiring mechanical ventilation: A Randomized Controlled Trial. J Intensive Care Med 39:1012–1022. https://doi.org/10.1177/08850666241250319AshoorTMAbd ElazimAEHMustafaZAE2024Outcomes of high-dose versus low-dose vitamin D on prognosis of sepsis requiring mechanical ventilation: A Randomized Controlled TrialJ Intensive Care Med3910121022https://doi.org/10.1177/08850666241250319Search in Google Scholar
Bandurska K, Berdowska A, Barczyńska-Felusiak R et al. (2015) Unique features of human cathelicidin LL-37. Biofactors 41:289–300. https://doi.org/10.1002/biof.1225BandurskaKBerdowskaABarczyńska-FelusiakR2015Unique features of human cathelicidin LL-37Biofactors41289300https://doi.org/10.1002/biof.1225Search in Google Scholar
Barbeiro DF, Barbeiro HV, Zampieri FG et al. (2013) Cathelicidin LL-37 bloodstream surveillance is down regulated during septic shock. Microbes Infect 15:342–346. https://doi.org/10.1016/j.micinf.2013.01.001BarbeiroDFBarbeiroHVZampieriFG2013Cathelicidin LL-37 bloodstream surveillance is down regulated during septic shockMicrobes Infect15342346https://doi.org/10.1016/j.micinf.2013.01.001Search in Google Scholar
Berkestedt I, Herwald H, Ljunggren L et al. (2010) Elevated plasma levels of antimicrobial polypeptides in patients with severe sepsis. J Innate Immun 2:478–482. https://doi.org/10.1159/000317036BerkestedtIHerwaldHLjunggrenL2010Elevated plasma levels of antimicrobial polypeptides in patients with severe sepsisJ Innate Immun2478482https://doi.org/10.1159/000317036Search in Google Scholar
Berkestedt I, Nelson A, Bodelsson M (2008) Endogenous antimicrobial peptide LL-37 induces human vasodilatation. Br J Anaesth 100:803–809. https://doi.org/10.1093/bja/aen074BerkestedtINelsonABodelssonM2008Endogenous antimicrobial peptide LL-37 induces human vasodilatationBr J Anaesth100803809https://doi.org/10.1093/bja/aen074Search in Google Scholar
Bowdish DM, Davidson DJ, Hancock R (2005) A re-evaluation of the role of host defence peptides in mammalian immunity. Curr Protein Pept Sci 6:35–51. https://doi.org/10.2174/1389203053027494BowdishDMDavidsonDJHancockR2005A re-evaluation of the role of host defence peptides in mammalian immunityCurr Protein Pept Sci63551https://doi.org/10.2174/1389203053027494Search in Google Scholar
Bucki R, Byfield FJ, Janmey PA (2007) Release of the antimicrobial peptide LL-37 from DNA/F-actin bundles in cystic fibrosis sputum. Eur Respir J 29:624–632. https://doi.org/10.1183/09031936.00080806BuckiRByfieldFJJanmeyPA2007Release of the antimicrobial peptide LL-37 from DNA/F-actin bundles in cystic fibrosis sputumEur Respir J29624632https://doi.org/10.1183/09031936.00080806Search in Google Scholar
Bucki R, Leszczyńska K, Namiot A et al. (2010) Cathelicidin LL-37: A multitask antimicrobial peptide. Arch Immunol Ther Exp 58:15–25. https://doi.org/10.1007/s00005-009-0057-2BuckiRLeszczyńskaKNamiotA2010Cathelicidin LL-37: A multitask antimicrobial peptideArch Immunol Ther Exp581525https://doi.org/10.1007/s00005-009-0057-2Search in Google Scholar
Byfield FJ, Wen Q, Leszczynska K et al. (2011) Cathelicidin LL-37 peptide regulates endothelial cell stiffness and endothelial barrier permeability. Am J Physiol Cell Physiol 300:C105–112. https://doi.org/10.1152/ajpcell.00158.2010ByfieldFJWenQLeszczynskaK2011Cathelicidin LL-37 peptide regulates endothelial cell stiffness and endothelial barrier permeabilityAm J Physiol Cell Physiol300C105112https://doi.org/10.1152/ajpcell.00158.2010Search in Google Scholar
Castillo JA, Giraldo DM, Smit JM et al. (2022) Vitamin D-induced LL-37 modulates innate immune responses of human primary macrophages during DENV-2 infection. Pathog Dis 80:ftac014. https://doi.org/10.1093/femspd/ftac014CastilloJAGiraldoDMSmitJM2022Vitamin D-induced LL-37 modulates innate immune responses of human primary macrophages during DENV-2 infectionPathog Dis80ftac014https://doi.org/10.1093/femspd/ftac014Search in Google Scholar
Chen CI, Schaller-Bals S, Paul KP et al. (2004) Beta-defensins and LL-37 in bronchoalveolar lavage fluid of patients with cystic fibrosis. J Cyst Fibros 3:45–50. https://doi.org/10.1016/j.jcf.2003.12.008ChenCISchaller-BalsSPaulKP2004Beta-defensins and LL-37 in bronchoalveolar lavage fluid of patients with cystic fibrosisJ Cyst Fibros34550https://doi.org/10.1016/j.jcf.2003.12.008Search in Google Scholar
Cheung GYC, Bae JS, Liu R et al. (2021) Bacterial virulence plays a crucial role in MRSA sepsis. PLoS Pathog 17:e1009369. https://doi.org/10.1371/journal.ppat.1009369CheungGYCBaeJSLiuR2021Bacterial virulence plays a crucial role in MRSA sepsisPLoS Pathog17e1009369https://doi.org/10.1371/journal.ppat.1009369Search in Google Scholar
Chinipardaz Z, Zhong JM, Yang S (2022) Regulation of LL-37 in bone and periodontium regeneration. Life 12:1533. https://doi.org/10.3390/life12101533ChinipardazZZhongJMYangS2022Regulation of LL-37 in bone and periodontium regenerationLife121533https://doi.org/10.3390/life12101533Search in Google Scholar
Cirioni O, Ghiselli R, Tomasinsig L et al. (2008) Efficacy of LL-37 and granulocyte colony-stimulating factor in a neutropenic murine sepsis due to Pseudomonas aeruginosa. Shock 30:443–448. https://doi.org/10.1097/SHK.0b013e31816d2269CirioniOGhiselliRTomasinsigL2008Efficacy of LL-37 and granulocyte colony-stimulating factor in a neutropenic murine sepsis due to Pseudomonas aeruginosaShock30443448https://doi.org/10.1097/SHK.0b013e31816d2269Search in Google Scholar
Cirioni O, Giacometti A, Ghiselli R et al. (2006) LL-37 protects rats against lethal sepsis caused by gram-negative bacteria. Antimicrob Agents Chemother 50:1672–1679. https://doi.org/10.1128/aac.50.5.1672-1679.2006CirioniOGiacomettiAGhiselliR2006LL-37 protects rats against lethal sepsis caused by gram-negative bacteriaAntimicrob Agents Chemother5016721679https://doi.org/10.1128/aac.50.5.1672-1679.2006Search in Google Scholar
Coorens M, Scheenstra MR, Veldhuizen EJ et al. (2017) Interspecies cathelicidin comparison reveals divergence in antimicrobial activity, TLR modulation, chemokine induction and regulation of phagocytosis. Sci Rep 7:40874. https://doi.org/10.1038/srep40874CoorensMScheenstraMRVeldhuizenEJ2017Interspecies cathelicidin comparison reveals divergence in antimicrobial activity, TLR modulation, chemokine induction and regulation of phagocytosisSci Rep740874https://doi.org/10.1038/srep40874Search in Google Scholar
Crimi E, Slutsky AS (2004) Inflammation and the acute respiratory distress syndrome. Best Pract Res Clin Anaesthesiol 18:477–492. https://doi.org/10.1016/j.bpa.2003.12.007CrimiESlutskyAS2004Inflammation and the acute respiratory distress syndromeBest Pract Res Clin Anaesthesiol18477492https://doi.org/10.1016/j.bpa.2003.12.007Search in Google Scholar
Cutuli SL, Ferrando ES, Cammarota F et al. (2024) Update on vitamin D role in severe infections and sepsis. J Anesth Analg Crit Care 4:4. https://doi.org/10.1186/s44158-024-00139-5CutuliSLFerrandoESCammarotaF2024Update on vitamin D role in severe infections and sepsisJ Anesth Analg Crit Care44https://doi.org/10.1186/s44158-024-00139-5Search in Google Scholar
Delrue C, Speeckaert R, Delanghe JR et al. (2023) Vitamin D deficiency: An underestimated factor in sepsis? Int J Mol Sci 24:2924. https://doi.org/10.3390/ijms24032924DelrueCSpeeckaertRDelangheJR2023Vitamin D deficiency: An underestimated factor in sepsis?Int J Mol Sci242924https://doi.org/10.3390/ijms24032924Search in Google Scholar
Dickson K, Lehmann C (2019) Inflammatory response to different toxins in experimental sepsis models. Int J Mol Sci 20:4341. https://doi.org/10.3390/ijms20184341DicksonKLehmannC2019Inflammatory response to different toxins in experimental sepsis modelsInt J Mol Sci204341https://doi.org/10.3390/ijms20184341Search in Google Scholar
Dolin HH, Papadimos TJ, Chen X et al. (2019) Characterization of pathogenic sepsis etiologies and patient profiles: A novel approach to triage and treatment. Microbiol Insights 12:1178636118825081. https://doi.org/10.1177/1178636118825081DolinHHPapadimosTJChenX2019Characterization of pathogenic sepsis etiologies and patient profiles: A novel approach to triage and treatmentMicrobiol Insights121178636118825081https://doi.org/10.1177/1178636118825081Search in Google Scholar
Dolmatova EV, Wang K, Mandavilli R et al. (2021) The effects of sepsis on endothelium and clinical implications. Cardiovasc Res 117:60–73. https://doi.org/10.1093/cvr/cvaa070DolmatovaEVWangKMandavilliR2021The effects of sepsis on endothelium and clinical implicationsCardiovasc Res1176073https://doi.org/10.1093/cvr/cvaa070Search in Google Scholar
Duggan S, Leonhardt I, Hünniger K et al. (2015) Host response to Candida albicans bloodstream infection and sepsis. Virulence 6:316–326. https://doi.org/10.4161/21505594.2014.988096DugganSLeonhardtIHünnigerK2015Host response to Candida albicans bloodstream infection and sepsisVirulence6316326https://doi.org/10.4161/21505594.2014.988096Search in Google Scholar
Durnaś B, Wnorowska U, Pogoda K et al. (2016) Candidacidal activity of selected ceragenins and human cathelicidin LL-37 in experimental settings mimicking infection sites. PLoS One 11:e0157242. https://doi.org/10.1371/journal.pone.0157242DurnaśBWnorowskaUPogodaK2016Candidacidal activity of selected ceragenins and human cathelicidin LL-37 in experimental settings mimicking infection sitesPLoS One11e0157242https://doi.org/10.1371/journal.pone.0157242Search in Google Scholar
Elssner A, Duncan M, Gavrilin M et al. (2004) A novel P2X7 receptor activator, the human cathelicidin-derived peptide LL37, induces IL-1β processing and release1. J Immunol 172:4987–4994. https://doi.org/10.4049/jimmunol.172.8.4987ElssnerADuncanMGavrilinM2004A novel P2X7 receptor activator, the human cathelicidin-derived peptide LL37, induces IL-1β processing and release1J Immunol17249874994https://doi.org/10.4049/jimmunol.172.8.4987Search in Google Scholar
Engelberg Y, Landau M (2020) The human LL-37(17-29) antimicrobial peptide reveals a functional supramolecular structure. Nat Commun 11:3894. https://doi.org/10.1038/s41467-020-17736-xEngelbergYLandauM2020The human LL-37(17-29) antimicrobial peptide reveals a functional supramolecular structureNat Commun113894https://doi.org/10.1038/s41467-020-17736-xSearch in Google Scholar
Fukumoto K, Nagaoka I, Yamataka A et al. (2005) Effect of antibacterial cathelicidin peptide CAP18/LL-37 on sepsis in neonatal rats. Pediatr Surg Int 21:20–24. https://doi.org/10.1007/s00383-004-1256-xFukumotoKNagaokaIYamatakaA2005Effect of antibacterial cathelicidin peptide CAP18/LL-37 on sepsis in neonatal ratsPediatr Surg Int212024https://doi.org/10.1007/s00383-004-1256-xSearch in Google Scholar
Gauer R, Forbes D, Boyer N (2020) Sepsis: Diagnosis and management. Am Fam Physician 101:409–418.GauerRForbesDBoyerN2020Sepsis: Diagnosis and managementAm Fam Physician101409418Search in Google Scholar
Geitani R, Ayoub Moubareck C, Touqui L et al. (2019) Cationic antimicrobial peptides: Alternatives and/or adjuvants to antibiotics active against methicillin-resistant Staphylococcus aureus and multidrug-resistant Pseudomonas aeruginosa. BMC Microbiol 19:54. https://doi.org/10.1186/s12866-019-1416-8GeitaniRAyoub MoubareckCTouquiL2019Cationic antimicrobial peptides: Alternatives and/or adjuvants to antibiotics active against methicillin-resistant Staphylococcus aureus and multidrug-resistant Pseudomonas aeruginosaBMC Microbiol1954https://doi.org/10.1186/s12866-019-1416-8Search in Google Scholar
Grondman I, Pirvu A, Riza A et al. (2020) Biomarkers of inflammation and the etiology of sepsis. Biochem Soc Trans 48:1–14. https://doi.org/10.1042/bst20190029GrondmanIPirvuARizaA2020Biomarkers of inflammation and the etiology of sepsisBiochem Soc Trans48114https://doi.org/10.1042/bst20190029Search in Google Scholar
Guan J, Shichen M, Liang Z et al. (2023) Potential benefits of vitamin D for sepsis prophylaxis in critical ill patients. Front Nutr 10:1073894. https://doi.org/10.3389/fnut.2023.1073894GuanJShichenMLiangZ2023Potential benefits of vitamin D for sepsis prophylaxis in critical ill patientsFront Nutr101073894https://doi.org/10.3389/fnut.2023.1073894Search in Google Scholar
Guilhelmelli F, Vilela N, Albuquerque P et al. (2013) Antibiotic development challenges: The various mechanisms of action of antimicrobial peptides and of bacterial resistance. Front Microbiol 4:353. https://doi.org/10.3389/fmicb.2013.00353GuilhelmelliFVilelaNAlbuquerqueP2013Antibiotic development challenges: The various mechanisms of action of antimicrobial peptides and of bacterial resistanceFront Microbiol4353https://doi.org/10.3389/fmicb.2013.00353Search in Google Scholar
Guo W, Wang C, Huo F et al. (2018) [Evaluation value of human antibacterial peptide LL-37 on the prognosis of elderly patients with sepsis]. Zhonghua wei zhong bing ji jiu yi xue 30:1011–1016. https://doi.org/10.3760/cma.j.issn.2095-4352.2018.011.001GuoWWangCHuoF2018[Evaluation value of human antibacterial peptide LL-37 on the prognosis of elderly patients with sepsis]Zhonghua wei zhong bing ji jiu yi xue3010111016https://doi.org/10.3760/cma.j.issn.2095-4352.2018.011.001Search in Google Scholar
Holmes CL, Anderson MT, Mobley HLT et al. (2021) Pathogenesis of Gram-negative bacteremia. Clin Microbiol Rev 34:e00234–20. https://doi.org/10.1128/CMR.00234-20HolmesCLAndersonMTMobleyHLT2021Pathogenesis of Gram-negative bacteremiaClin Microbiol Rev34e0023420https://doi.org/10.1128/CMR.00234-20Search in Google Scholar
Holt AM, Nett JE (2024) Innate immune response to Candida auris. Curr Opin Microbiol 80:102510. https://doi.org/10.1016/j.mib.2024.102510HoltAMNettJE2024Innate immune response to Candida aurisCurr Opin Microbiol80102510https://doi.org/10.1016/j.mib.2024.102510Search in Google Scholar
Huang M, Cai S, Su J (2019) The pathogenesis of sepsis and potential therapeutic targets. Int J Mol Sci 20:5376. https://doi.org/10.3390/ijms20215376HuangMCaiSSuJ2019The pathogenesis of sepsis and potential therapeutic targetsInt J Mol Sci205376https://doi.org/10.3390/ijms20215376Search in Google Scholar
Hu Z, Murakami T, Suzuki K et al. (2014) Antimicrobial cathelicidin peptide LL-37 inhibits the LPS/ATP-induced pyroptosis of macrophages by dual mechanism. PLoS One 9:e85765. https://doi.org/10.1371/journal.pone.0085765HuZMurakamiTSuzukiK2014Antimicrobial cathelicidin peptide LL-37 inhibits the LPS/ATP-induced pyroptosis of macrophages by dual mechanismPLoS One9e85765https://doi.org/10.1371/journal.pone.0085765Search in Google Scholar
Hu Z, Murakami T, Suzuki K et al. (2016) Antimicrobial cathelicidin peptide LL-37 inhibits the pyroptosis of macrophages and improves the survival of polybacterial septic mice. Int Immunol 28:245–253. https://doi.org/10.1093/intimm/dxv113HuZMurakamiTSuzukiK2016Antimicrobial cathelicidin peptide LL-37 inhibits the pyroptosis of macrophages and improves the survival of polybacterial septic miceInt Immunol28245253https://doi.org/10.1093/intimm/dxv113Search in Google Scholar
Hu Z, Nagaoka I (2016) Modulation of macrophage cell death, pyroptosis by host defense peptide LL-37. Juntendo Med J 62:98–104. https://doi.org/10.14789/jmj.62.98HuZNagaokaI2016Modulation of macrophage cell death, pyroptosis by host defense peptide LL-37Juntendo Med J6298104https://doi.org/10.14789/jmj.62.98Search in Google Scholar
Ince C, Mayeux PR, Nguyen T et al. (2016) The endothelium in sepsis. Shock 45:259–270. https://doi.org/10.1097/shk.0000000000000473InceCMayeuxPRNguyenT2016The endothelium in sepsisShock45259270https://doi.org/10.1097/shk.0000000000000473Search in Google Scholar
Jedynak M, Siemiątkowski A, Rygasiewicz K (2012) [Molecular basics of sepsis developemen]. Anestezjol Intens Ter 44: 248–252. https://www.termedia.pl/Molecular-basics-of-sepsis &doubt;developement,144,39357,1,1.htmlJedynakMSiemiątkowskiARygasiewiczK2012[Molecular basics of sepsis developemen]Anestezjol Intens Ter44248252https://www.termedia.pl/Molecular-basics-of-sepsisdevelopement,144,39357,1,1.htmlSearch in Google Scholar
Jeng L, Yamshchikov AV, Judd SE et al. (2009) Alterations in vitamin D status and anti-microbial peptide levels in patients in the intensive care unit with sepsis. J Transl Med 7:28. https://doi.org/10.1186/1479-5876-7-28JengLYamshchikovAVJuddSE2009Alterations in vitamin D status and anti-microbial peptide levels in patients in the intensive care unit with sepsisJ Transl Med728https://doi.org/10.1186/1479-5876-7-28Search in Google Scholar
Kahlenberg JM, Carmona-Rivera C, Smith CK et al. (2013) Neutrophil extracellular trap–associated protein activation of the NLRP3 inflammasome is enhanced in lupus macrophages. J Immunol 190:1217–1226. https://doi.org/10.4049/jimmunol.1202388KahlenbergJMCarmona-RiveraCSmithCK2013Neutrophil extracellular trap–associated protein activation of the NLRP3 inflammasome is enhanced in lupus macrophagesJ Immunol19012171226https://doi.org/10.4049/jimmunol.1202388Search in Google Scholar
Koczulla R, von Degenfeld G, Kupatt C et al. (2003) An angiogenic role for the human peptide antibiotic LL-37/hCAP-18. J Clin Invest 111:1665–1672. https://doi.org/10.1172/jci17545KoczullaRvon DegenfeldGKupattC2003An angiogenic role for the human peptide antibiotic LL-37/hCAP-18J Clin Invest11116651672https://doi.org/10.1172/jci17545Search in Google Scholar
Koppen BC, Mulder PPG, de Boer L et al. (2019) Synergistic microbicidal effect of cationic antimicrobial peptides and teicoplanin against planktonic and biofilm-encased Staphylococcus aureus. Int J Antimicrob Agents 53:143–151. https://doi.org/10.1016/j.ijantimicag.2018.10.002KoppenBCMulderPPGde BoerL2019Synergistic microbicidal effect of cationic antimicrobial peptides and teicoplanin against planktonic and biofilm-encased Staphylococcus aureusInt J Antimicrob Agents53143151https://doi.org/10.1016/j.ijantimicag.2018.10.002Search in Google Scholar
Koziel J, Bryzek D, Sroka A et al. (2014) Citrullination alters immunomodulatory function of LL-37 essential for prevention of endotoxin-induced sepsis. J Immunol 192:5363–5372. https://doi.org/10.4049/jimmunol.1303062KozielJBryzekDSrokaA2014Citrullination alters immunomodulatory function of LL-37 essential for prevention of endotoxin-induced sepsisJ Immunol19253635372https://doi.org/10.4049/jimmunol.1303062Search in Google Scholar
Kumagai Y, Murakami T, Kuwahara-Arai et al. (2020) Antimicrobial peptide LL-37 ameliorates a murine sepsis model via the induction of microvesicle release from neutrophils. Innate Immun 26:565–579. https://doi.org/10.1177/1753425920936754KumagaiYMurakamiTKuwahara-Arai2020Antimicrobial peptide LL-37 ameliorates a murine sepsis model via the induction of microvesicle release from neutrophilsInnate Immun26565579https://doi.org/10.1177/1753425920936754Search in Google Scholar
Leite ML, Duque HM, Rodrigues GR et al. (2023) The LL-37 domain: A clue to cathelicidin immunomodulatory response? Peptides 165:171011. https://doi.org/10.1016/j.peptides.2023.171011LeiteMLDuqueHMRodriguesGR2023The LL-37 domain: A clue to cathelicidin immunomodulatory response?Peptides165171011https://doi.org/10.1016/j.peptides.2023.171011Search in Google Scholar
Lepper PM, Held TK, Schneider EM et al. (2002) Clinical implications of antibiotic-induced endotoxin release in septic shock. Intensive Care Med 28:824–833. https://doi.org/10.1007/s00134-002-1330-6LepperPMHeldTKSchneiderEM2002Clinical implications of antibiotic-induced endotoxin release in septic shockIntensive Care Med28824833https://doi.org/10.1007/s00134-002-1330-6Search in Google Scholar
Leszczyńska K, Namiot A, Janmey PA et al. (2010) Modulation of exogenous antibiotic activity by host cathelicidin LL-37. APMIS 118:830–836. https://doi.org/10.1111/j.1600-0463.2010.02667.xLeszczyńskaKNamiotAJanmeyPA2010Modulation of exogenous antibiotic activity by host cathelicidin LL-37APMIS118830836https://doi.org/10.1111/j.1600-0463.2010.02667.xSearch in Google Scholar
Li Z, Song Y, Yuan P et al. (2020) Antibacterial fusion protein BPI21/LL-37 modification enhances the therapeutic efficacy of hUC-MSCs in sepsis. Mol Ther 28:1806–1817. https://doi.org/10.1016/j.ymthe.2020.05.014LiZSongYYuanP2020Antibacterial fusion protein BPI21/LL-37 modification enhances the therapeutic efficacy of hUC-MSCs in sepsisMol Ther2818061817https://doi.org/10.1016/j.ymthe.2020.05.014Search in Google Scholar
Liu A, Zhou Y, Ye P et al. (2019) [Clinical significance of antibacterial peptide LL-37 in early diagnosis of patients with sepsis in emergency department]. Zhonghua wei zhong bing ji jiu yi xue 31:1083–1086. https://doi.org/10.3760/cma.j.issn.2095-4352.2019.09.005LiuAZhouYYeP2019[Clinical significance of antibacterial peptide LL-37 in early diagnosis of patients with sepsis in emergency department]Zhonghua wei zhong bing ji jiu yi xue3110831086https://doi.org/10.3760/cma.j.issn.2095-4352.2019.09.005Search in Google Scholar
Majewski K, Kozłowska E, Żelechowska P et al. (2018) Serum concentrations of antimicrobial peptide cathelicidin LL-37 in patients with bacterial lung infections. Cent Eur J Immunol 43:453–457. https://doi.org/10.5114/ceji.2018.81355MajewskiKKozłowskaEŻelechowskaP2018Serum concentrations of antimicrobial peptide cathelicidin LL-37 in patients with bacterial lung infectionsCent Eur J Immunol43453457https://doi.org/10.5114/ceji.2018.81355Search in Google Scholar
Makowska M, Prahl A, Małuch I (2019) [Characteristic of AMP and the effects of chemical modifications on the modulation of their antimicrobial properties]. Postepy Biochem 65:278–288. https://doi.org/10.18388/pb.2019_280MakowskaMPrahlAMałuchI2019[Characteristic of AMP and the effects of chemical modifications on the modulation of their antimicrobial properties]Postepy Biochem65278288https://doi.org/10.18388/pb.2019_280Search in Google Scholar
Marturano JE, Lowery TJ (2019) ESKAPE pathogens in bloodstream infections are associated with higher cost and mortality but can be predicted using diagnoses upon admission. Open Forum Infect Dis 6:ofz503. https://doi.org/10.1093/ofid/ofz503MarturanoJELoweryTJ2019ESKAPE pathogens in bloodstream infections are associated with higher cost and mortality but can be predicted using diagnoses upon admissionOpen Forum Infect Dis6ofz503https://doi.org/10.1093/ofid/ofz503Search in Google Scholar
McMullan RR, McAuley DF, O’Kane CM et al. (2024) Vascular leak in sepsis: Physiological basis and potential therapeutic advances. Crit Care 28:97. https://doi.org/10.1186/s13054-024-04875-6McMullanRRMcAuleyDFO’KaneCM2024Vascular leak in sepsis: Physiological basis and potential therapeutic advancesCrit Care2897https://doi.org/10.1186/s13054-024-04875-6Search in Google Scholar
Memariani M, Memariani H (2023) Antifungal properties of cathelicidin LL-37: Current knowledge and future research directions. World J Microbiol Biotechnol 40:34. https://doi.org/10.1007/s11274-023-03852-5MemarianiMMemarianiH2023Antifungal properties of cathelicidin LL-37: Current knowledge and future research directionsWorld J Microbiol Biotechnol4034https://doi.org/10.1007/s11274-023-03852-5Search in Google Scholar
Miao J, Ren Z, Zhong Z et al. (2022) The correlation of antibacterial peptides concentration in umbilical cord blood and early onset sepsis in preterm infants. Front Pediatr 10:903319. https://doi.org/10.3389/fped.2022.903319MiaoJRenZZhongZ2022The correlation of antibacterial peptides concentration in umbilical cord blood and early onset sepsis in preterm infantsFront Pediatr10903319https://doi.org/10.3389/fped.2022.903319Search in Google Scholar
Minasyan H (2019) Sepsis: Mechanisms of bacterial injury to the patient. Scand J Trauma Resusc Emerg Med 27:19. https://doi.org/10.1186/s13049-019-0596-4MinasyanH2019Sepsis: Mechanisms of bacterial injury to the patientScand J Trauma Resusc Emerg Med2719https://doi.org/10.1186/s13049-019-0596-4Search in Google Scholar
Mookherjee N, Brown KL, Bowdish DM (2006) Modulation of the TLR-mediated inflammatory response by the endogenous human host defense peptide LL-37. J Immunol 176:2455–2464. https://doi.org/10.4049/jimmunol.176.4.2455MookherjeeNBrownKLBowdishDM2006Modulation of the TLR-mediated inflammatory response by the endogenous human host defense peptide LL-37J Immunol17624552464https://doi.org/10.4049/jimmunol.176.4.2455Search in Google Scholar
Morroni G, Sante LD, Simonetti O et al. (2021) Synergistic effect of antimicrobial peptide LL-37 and colistin combination against multidrug-resistant Escherichia coli isolates. Future Microbiol 16:221–227. https://doi.org/10.2217/fmb-2020-0204MorroniGSanteLDSimonettiO2021Synergistic effect of antimicrobial peptide LL-37 and colistin combination against multidrug-resistant Escherichia coli isolatesFuture Microbiol16221227https://doi.org/10.2217/fmb-2020-0204Search in Google Scholar
Nagaoka I, Tamura H, Hirata M (2006) An antimicrobial cathelicidin peptide, human CAP18/LL-37, suppresses neutrophil apoptosis via the activation of formyl-peptide receptor-like 1 and P2X71. J Immunol 176:3044–3052. https://doi.org/10.4049/jimmunol.176.5.3044NagaokaITamuraHHirataM2006An antimicrobial cathelicidin peptide, human CAP18/LL-37, suppresses neutrophil apoptosis via the activation of formyl-peptide receptor-like 1 and P2X71J Immunol17630443052https://doi.org/10.4049/jimmunol.176.5.3044Search in Google Scholar
Nagaoka I, Tamura H, Reich J (2020) Therapeutic potential of cathelicidin peptide LL-37, an antimicrobial agent, in a murine sepsis model. Int J Mol Sci 21:5973. https://doi.org/10.3390/ijms21175973NagaokaITamuraHReichJ2020Therapeutic potential of cathelicidin peptide LL-37, an antimicrobial agent, in a murine sepsis modelInt J Mol Sci215973https://doi.org/10.3390/ijms21175973Search in Google Scholar
Nilsson BO (2020) What can we learn about functional importance of human antimicrobial peptide LL-37 in the oral environment from severe congenital neutropenia (Kostmann disease)? Peptides 128:170311. https://doi.org/10.1016/j.peptides.2020.170311NilssonBO2020What can we learn about functional importance of human antimicrobial peptide LL-37 in the oral environment from severe congenital neutropenia (Kostmann disease)?Peptides128170311https://doi.org/10.1016/j.peptides.2020.170311Search in Google Scholar
Ou Q, Tan L, Shao Y et al. (2022) Electrostatic charge-mediated apoptotic vesicle biodistribution attenuates sepsis by switching neutrophil NETosis to apoptosis. Small 18:2200306. https://doi.org/10.1002/smll.202200306OuQTanLShaoY2022Electrostatic charge-mediated apoptotic vesicle biodistribution attenuates sepsis by switching neutrophil NETosis to apoptosisSmall182200306https://doi.org/10.1002/smll.202200306Search in Google Scholar
Pahar B, Madonna S, Das A et al. (2020) Immunomodulatory role of the antimicrobial LL-37 peptide in autoimmune diseases and viral infections. Vaccines (Basel) 8:517. https://www.mdpi.com/2076-393X/8/3/517. https://doi.org/10.3390/vaccines8030517PaharBMadonnaSDasA2020Immunomodulatory role of the antimicrobial LL-37 peptide in autoimmune diseases and viral infectionsVaccines (Basel)8517https://www.mdpi.com/2076-393X/8/3/517. https://doi.org/10.3390/vaccines8030517Search in Google Scholar
Pavelka A, Vacek L, Norek A et al. (2024) Recombinant production of human antimicrobial peptide LL-37 and its secondary structure. Biologia 79:263–273. https://doi.org/10.1007/s11756-023-01539-8PavelkaAVacekLNorekA2024Recombinant production of human antimicrobial peptide LL-37 and its secondary structureBiologia79263273https://doi.org/10.1007/s11756-023-01539-8Search in Google Scholar
Perez-Rodriguez A, Eraso E, Quindós G et al. (2022) Antimicrobial peptides with anti-candida activity. Int J Mol Sci 23:9264. https://doi.org/10.3390/ijms23169264Perez-RodriguezAErasoEQuindósG2022Antimicrobial peptides with anti-candida activityInt J Mol Sci239264https://doi.org/10.3390/ijms23169264Search in Google Scholar
Popescu NI, Lupu C, Lupu F (2022) Disseminated intravascular coagulation and its immune mechanisms. Blood 139:1973–1986. https://doi.org/10.1182/blood.2020007208PopescuNILupuCLupuF2022Disseminated intravascular coagulation and its immune mechanismsBlood13919731986https://doi.org/10.1182/blood.2020007208Search in Google Scholar
Qin X, Zhu G, Huang L et al. (2019) LL-37 and its analog FF/CAP18 attenuate neutrophil migration in sepsis-induced acute lung injury. J Cell Biochem 120:4863–4871. https://doi.org/10.1002/jcb.27641QinXZhuGHuangL2019LL-37 and its analog FF/CAP18 attenuate neutrophil migration in sepsis-induced acute lung injuryJ Cell Biochem12048634871https://doi.org/10.1002/jcb.27641Search in Google Scholar
Quraishi SA, De Pascale G, Needleman JS et al. (2015) Effect of cholecalciferol supplementation on vitamin D status and cathelicidin levels in sepsis. Crit Care Med 43:1928–1937. https://doi.org/10.1097/ccm.0000000000001148QuraishiSADe PascaleGNeedlemanJS2015Effect of cholecalciferol supplementation on vitamin D status and cathelicidin levels in sepsisCrit Care Med4319281937https://doi.org/10.1097/ccm.0000000000001148Search in Google Scholar
Rapala-Kozik M, Bochenska O, Zawrotniak M et al. (2015) Inactivation of the antifungal and immunomodulatory properties of human cathelicidin LL-37 by aspartic proteases produced by the pathogenic yeast Candida albicans. Infect Immun 83:2518–2530. https://doi.org/10.1128/iai.00023-15Rapala-KozikMBochenskaOZawrotniakM2015Inactivation of the antifungal and immunomodulatory properties of human cathelicidin LL-37 by aspartic proteases produced by the pathogenic yeast Candida albicansInfect Immun8325182530https://doi.org/10.1128/iai.00023-15Search in Google Scholar
Rather IA, Sabir JSM, Asseri AH et al. (2022) Antifungal activity of human cathelicidin LL-37, a membrane disrupting peptide, by triggering oxidative stress and cell cycle arrest in Candida auris. J Fungi (Basel) 8:204. https://doi.org/10.3390/jof8020204RatherIASabirJSMAsseriAH2022Antifungal activity of human cathelicidin LL-37, a membrane disrupting peptide, by triggering oxidative stress and cell cycle arrest in Candida aurisJ Fungi (Basel)8204https://doi.org/10.3390/jof8020204Search in Google Scholar
Ridyard KE, Elsawy M, Mattrasingh D et al. (2023) Synergy between human peptide LL-37 and polymyxin B against planktonic and biofilm cells of Escherichia coli and Pseudomonas aeruginosa. Antibiotics (Basel) 12:389. https://doi.org/10.3390/antibiotics12020389RidyardKEElsawyMMattrasinghD2023Synergy between human peptide LL-37 and polymyxin B against planktonic and biofilm cells of Escherichia coli and Pseudomonas aeruginosaAntibiotics (Basel)12389https://doi.org/10.3390/antibiotics12020389Search in Google Scholar
Ridyard KE, Overhage J (2021) The potential of human peptide LL-37 as an antimicrobial and anti-biofilm agent. Antibiotics (Basel) 10:650. https://doi.org/10.3390/antibiotics10060650RidyardKEOverhageJ2021The potential of human peptide LL-37 as an antimicrobial and anti-biofilm agentAntibiotics (Basel)10650https://doi.org/10.3390/antibiotics10060650Search in Google Scholar
Salamah MF, Ravishankar D, Kodji X et al. (2018) The endogenous antimicrobial cathelicidin LL37 induces platelet activation and augments thrombus formation. Blood Adv 2:2973–2985. https://doi.org/10.1182/bloodadvances.2018021758SalamahMFRavishankarDKodjiX2018The endogenous antimicrobial cathelicidin LL37 induces platelet activation and augments thrombus formationBlood Adv229732985https://doi.org/10.1182/bloodadvances.2018021758Search in Google Scholar
Sánchez-Peña FJ, Romero-Tlalolini M, Torres-Aguilar H et al. (2023) LL-37 triggers antimicrobial activity in human platelets. Int J Mol Sci 24:2816. https://doi.org/10.3390/ijms24032816Sánchez-PeñaFJRomero-TlaloliniMTorres-AguilarH2023LL-37 triggers antimicrobial activity in human plateletsInt J Mol Sci242816https://doi.org/10.3390/ijms24032816Search in Google Scholar
Scarsini M, Tomasinsig L, Arzese A et al. (2015) Antifungal activity of cathelicidin peptides against planktonic and biofilm cultures of Candida species isolated from vaginal infections. Peptides 71:211–221. https://doi.org/10.1016/j.peptides.2015.07.023ScarsiniMTomasinsigLArzeseA2015Antifungal activity of cathelicidin peptides against planktonic and biofilm cultures of Candida species isolated from vaginal infectionsPeptides71211221https://doi.org/10.1016/j.peptides.2015.07.023Search in Google Scholar
Scheenstra MR, van Harten RM, Veldhuizen EJA et al. (2020) Cathelicidins modulate TLR-activation and inflammation. Front Immunol 11:1137. https://doi.org/10.3389/fimmu.2020.01137ScheenstraMRvan HartenRMVeldhuizenEJA2020Cathelicidins modulate TLR-activation and inflammationFront Immunol111137https://doi.org/10.3389/fimmu.2020.01137Search in Google Scholar
Shawky NM, EL-Antouny NG, Hassaan NK et al. (2022) Emerging relationship between vitamin D and LL-37 in the immune system’s response to infection and their possible role in combating sepsis. Egypt J Hosp Med 86:427–430. https://doi.org/10.21608/ejhm.2022.213785ShawkyNMEL-AntounyNGHassaanNK2022Emerging relationship between vitamin D and LL-37 in the immune system’s response to infection and their possible role in combating sepsisEgypt J Hosp Med86427430https://doi.org/10.21608/ejhm.2022.213785Search in Google Scholar
Su W, Chen Y, Wang C et al. (2016) Human cathelicidin LL-37 inhibits platelet aggregation and thrombosis via Src/PI3K/Akt signaling. Biochem Biophys Res Commun 473:283–289. https://doi.org/10.1016/j.bbrc.2016.03.095SuWChenYWangC2016Human cathelicidin LL-37 inhibits platelet aggregation and thrombosis via Src/PI3K/Akt signalingBiochem Biophys Res Commun473283289https://doi.org/10.1016/j.bbrc.2016.03.095Search in Google Scholar
Sun W, Zheng Y, Lu Z et al. (2014) LL-37 attenuates inflammatory impairment via mTOR signaling-dependent mitochondrial protection. Int J Biochem Cell Biol 54:26–35. https://doi.org/10.1016/j.biocel.2014.06.015SunWZhengYLuZ2014LL-37 attenuates inflammatory impairment via mTOR signaling-dependent mitochondrial protectionInt J Biochem Cell Biol542635https://doi.org/10.1016/j.biocel.2014.06.015Search in Google Scholar
Suzuki K, Murakami T, Kuwahara-Arai K et al. (2011) Human anti-microbial cathelicidin peptide LL-37 suppresses the LPS-induced apoptosis of endothelial cells. Int Immunol 23:185–193. https://doi.org/10.1093/intimm/dxq471SuzukiKMurakamiTKuwahara-AraiK2011Human anti-microbial cathelicidin peptide LL-37 suppresses the LPS-induced apoptosis of endothelial cellsInt Immunol23185193https://doi.org/10.1093/intimm/dxq471Search in Google Scholar
Szulcek R, Bollensdorff C, Hordijk P et al. (2018) The covalently immobilized antimicrobial peptide LL37 acts as a VEGF mimic and stimulates endothelial cell proliferation. Biochem Biophys Res Commun 496:887–890. https://doi.org/10.1016/j.bbrc.2018.01.130SzulcekRBollensdorffCHordijkP2018The covalently immobilized antimicrobial peptide LL37 acts as a VEGF mimic and stimulates endothelial cell proliferationBiochem Biophys Res Commun496887890https://doi.org/10.1016/j.bbrc.2018.01.130Search in Google Scholar
Turner J, Cho Y, Dinh NN et al. (1998) Activities of LL-37, a cathelin-associated antimicrobial peptide of human neutrophils. Antimicrob Agents Chemother 42:2206–2214. https://doi.org/10.1128/aac.42.9.2206TurnerJChoYDinhNN1998Activities of LL-37, a cathelin-associated antimicrobial peptide of human neutrophilsAntimicrob Agents Chemother4222062214https://doi.org/10.1128/aac.42.9.2206Search in Google Scholar
Vaishnavi C (2013) Translocation of gut flora and its role in sepsis. Indian J Med Microbiol 31:334–342. https://doi.org/10.4103/0255-0857.118870VaishnaviC2013Translocation of gut flora and its role in sepsisIndian J Med Microbiol31334342https://doi.org/10.4103/0255-0857.118870Search in Google Scholar
van der Poll T, Shankar-Hari M, Wiersinga W (2021) The immunology of sepsis. Immunity 54:2450–2464. https://doi.org/10.1016/j.immuni.2021.10.012van der PollTShankar-HariMWiersingaW2021The immunology of sepsisImmunity5424502464https://doi.org/10.1016/j.immuni.2021.10.012Search in Google Scholar
Vandamme D, Landuyt B, Luyten W et al. (2012) A comprehensive summary of LL-37, the factotum human cathelicidin peptide. Cell Immunol 280:22–35. https://doi.org/10.1016/j.cellimm.2012.11.009VandammeDLanduytBLuytenW2012A comprehensive summary of LL-37, the factotum human cathelicidin peptideCell Immunol2802235https://doi.org/10.1016/j.cellimm.2012.11.009Search in Google Scholar
Vardon-Bounes F, Ruiz S, Gratacap MP et al. (2019) Platelets are critical key players in sepsis. Int J Mol Sci 20:3494. https://doi.org/10.3390/ijms20143494Vardon-BounesFRuizSGratacapMP2019Platelets are critical key players in sepsisInt J Mol Sci203494https://doi.org/10.3390/ijms20143494Search in Google Scholar
Wang G (2008) Structures of human host defense cathelicidin LL-37 and its smallest antimicrobial peptide KR-12 in lipid micelles. J Biol Chem 283:32637–32643. https://doi.org/10.1074/jbc.M805533200WangG2008Structures of human host defense cathelicidin LL-37 and its smallest antimicrobial peptide KR-12 in lipid micellesJ Biol Chem2833263732643https://doi.org/10.1074/jbc.M805533200Search in Google Scholar
Wang Q, Wen W, Zhou L et al. (2024) LL-37 improves sepsis-induced acute lung injury by suppressing pyroptosis in alveolar epithelial cells. Int Immunopharmacol 129:111580. https://doi.org/10.1016/j.intimp.2024.111580WangQWenWZhouL2024LL-37 improves sepsis-induced acute lung injury by suppressing pyroptosis in alveolar epithelial cellsInt Immunopharmacol129111580https://doi.org/10.1016/j.intimp.2024.111580Search in Google Scholar
Wiersinga WJ, van der Poll T (2022) Immunopathophysiology of human sepsis. EBioMedicine 86:104363. https://doi.org/10.1016/j.ebiom.2022.104363WiersingaWJvan der PollT2022Immunopathophysiology of human sepsisEBioMedicine86104363https://doi.org/10.1016/j.ebiom.2022.104363Search in Google Scholar
Xhindoli D, Pacor S, Benincasa M et al. (2016) The human cathelicidin LL-37 – A pore-forming antibacterial peptide and host-cell modulator. Biochim Biophys Acta 1858:546–566. https://doi.org/10.1016/j.bbamem.2015.11.003XhindoliDPacorSBenincasaM2016The human cathelicidin LL-37 – A pore-forming antibacterial peptide and host-cell modulatorBiochim Biophys Acta1858546566https://doi.org/10.1016/j.bbamem.2015.11.003Search in Google Scholar
Xiong Y, Hla T (2014) S1P control of endothelial integrity. Curr Top Microbiol Immunol 378:85–105. https://doi.org/10.1007/978-3-319-05879-5_4XiongYHlaT2014S1P control of endothelial integrityCurr Top Microbiol Immunol37885105https://doi.org/10.1007/978-3-319-05879-5_4Search in Google Scholar
Xue W, Pang J, Liu J et al. (2022) Septic cardiomyopathy: Characteristics, evaluation, and mechanism. Emerg Crit Care Med 2:135–147. https://doi.org/10.1097/EC9.0000000000000060XueWPangJLiuJ2022Septic cardiomyopathy: Characteristics, evaluation, and mechanismEmerg Crit Care Med2135147https://doi.org/10.1097/EC9.0000000000000060Search in Google Scholar
Yanagisawa T, Ishii M, Takahashi M et al. (2020) Human cathelicidin antimicrobial peptide LL-37 promotes lymphangiogenesis in lymphatic endothelial cells through the ERK and Akt signaling pathways. Mol Biol Rep 47:6841–6854. https://doi.org/10.1007/s11033-020-05741-8YanagisawaTIshiiMTakahashiM2020Human cathelicidin antimicrobial peptide LL-37 promotes lymphangiogenesis in lymphatic endothelial cells through the ERK and Akt signaling pathwaysMol Biol Rep4768416854https://doi.org/10.1007/s11033-020-05741-8Search in Google Scholar
Yang D, Chen Q, Schmidt AP et al. (2000) LL-37, the neutrophil granule- and epithelial cell-derived cathelicidin, utilizes formyl peptide receptor-like 1 (FPRL1) as a receptor to chemoattract human peripheral blood neutrophils, monocytes, and T cells. J Exp Med 192:1069–1074. https://doi.org/10.1084/jem.192.7.1069YangDChenQSchmidtAP2000LL-37, the neutrophil granule- and epithelial cell-derived cathelicidin, utilizes formyl peptide receptor-like 1 (FPRL1) as a receptor to chemoattract human peripheral blood neutrophils, monocytes, and T cellsJ Exp Med19210691074https://doi.org/10.1084/jem.192.7.1069Search in Google Scholar
Yang B, Good D, Mosaiab T et al. (2020) Significance of LL-37 on immunomodulation and disease outcome. Biomed Res Int 2020:8349712. https://doi.org/10.1155/2020/8349712YangBGoodDMosaiabT2020Significance of LL-37 on immunomodulation and disease outcomeBiomed Res Int20208349712https://doi.org/10.1155/2020/8349712Search in Google Scholar
Zeth K, Sancho-Vaello E (2021) Structural plasticity of LL-37 indicates elaborate functional adaptation mechanisms to bacterial target structures. Int J Mol Sci 22:5200. https://www.mdpi.com/1422-0067/22/10/5200. https://doi.org/10.3390/ijms22105200ZethKSancho-VaelloE2021Structural plasticity of LL-37 indicates elaborate functional adaptation mechanisms to bacterial target structuresInt J Mol Sci225200https://www.mdpi.com/1422-0067/22/10/5200. https://doi.org/10.3390/ijms22105200Search in Google Scholar
Zhu C, Liang Y, Luo Y et al. (2023) Role of pyroptosis in hemostasis activation in sepsis. Front Immunol 14:1114917. https://doi.org/10.3389/fimmu.2023.1114917ZhuCLiangYLuoY2023Role of pyroptosis in hemostasis activation in sepsisFront Immunol141114917https://doi.org/10.3389/fimmu.2023.1114917Search in Google Scholar