S-Adenosylmethionine Inhibits the Proliferation of Retinoblastoma Cell Y79, Induces Apoptosis and Cell Cycle Arrest of Y79 Cells by Inhibiting the Wnt2/β-Catenin Pathway
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Bai QL, Hu CW, Wang XR et al (2017) Mir-616 promotes proliferation and inhibits apoptosis in glioma cells by suppressing expression of Sox7 via the Wnt signaling pathway. Eur Rev Med Pharmacol Sci 21:5630–5637. https://doi.org/10.26355/eurrev_201712_14006BaiQLHuCWWangXR2017Mir-616 promotes proliferation and inhibits apoptosis in glioma cells by suppressing expression of Sox7 via the Wnt signaling pathwayEur Rev Med Pharmacol Sci2156305637https://doi.org/10.26355/eurrev_201712_14006Search in Google Scholar
Dimaras H, Corson TW, Cobrinik D et al (2015) Retinoblastoma. Nat Rev Dis Primers 1:15021. https://doi.org/10.1038/nrdp.2015.21DimarasHCorsonTWCobrinikD2015RetinoblastomaNat Rev Dis Primers115021https://doi.org/10.1038/nrdp.2015.21Search in Google Scholar
Galizia I, Oldani L, Macritchie K et al (2016) S-adenosyl methionine (same) for depression in adults. Cochrane Database Syst Rev 10:CD011286. https://doi.org/10.1002/14651858.CD011286.pub2GaliziaIOldaniLMacritchieK2016S-adenosyl methionine (same) for depression in adultsCochrane Database Syst Rev10CD011286. https://doi.org/10.1002/14651858.CD011286.pub2Search in Google Scholar
Hayashi T, Teruya T, Chaleckis R et al (2018) S-adenosylmethionine synthetase is required for cell growth, maintenance of go phase, and termination of quiescence in fission yeast. iScience 5:38–51. https://doi.org/10.1016/j.isci.2018.06.011HayashiTTeruyaTChaleckisR2018S-adenosylmethionine synthetase is required for cell growth, maintenance of go phase, and termination of quiescence in fission yeastiScience53851https://doi.org/10.1016/j.isci.2018.06.011Search in Google Scholar
He L, Zhou H, Zeng Z et al (2019) Wnt/Β-catenin signaling cascade: A promising target for glioma therapy. J Cell Physiol 3:2217–2228. https://doi.org/10.1002/jcp.27186HeLZhouHZengZ2019Wnt/Β-catenin signaling cascade: A promising target for glioma therapyJ Cell Physiol322172228https://doi.org/10.1002/jcp.27186Search in Google Scholar
Kruglova MP, Ivanov AV, Virus ED et al (2021) Urine S-adenosylmethionine are related to degree of renal insufficiency in patients with chronic kidney disease. Lab Med 52:47–56. https://doi.org/10.1093/labmed/lmaa034KruglovaMPIvanovAVVirusED2021Urine S-adenosylmethionine are related to degree of renal insufficiency in patients with chronic kidney diseaseLab Med524756https://doi.org/10.1093/labmed/lmaa034Search in Google Scholar
Liu Y, Bi T, Yuan F et al (2020) S-adenosylmethionine induces apoptosis and cycle arrest of gallbladder carcinoma cells by suppression of Jak2/Stat3 pathways. Naunyn Schmiedebergs Arch Pharmacol 393:2507–2515. https://doi.org/10.1007/s00210-020-01858-6LiuYBiTYuanF2020S-adenosylmethionine induces apoptosis and cycle arrest of gallbladder carcinoma cells by suppression of Jak2/Stat3 pathwaysNaunyn Schmiedebergs Arch Pharmacol39325072515https://doi.org/10.1007/s00210-020-01858-6Search in Google Scholar
Lu Y, Yang Y, Kang Z et al (2020) High-dose S-adenosylmethionine combined with ursodeoxycholic acid is more suitable for the treatment of cholestatic liver disease. Int J Clin Exp Med 13:7365–7371.LuYYangYKangZ2020High-dose S-adenosylmethionine combined with ursodeoxycholic acid is more suitable for the treatment of cholestatic liver diseaseInt J Clin Exp Med1373657371Search in Google Scholar
Luo Y, Zhou C, He F et al (2022) Contemporary update of retinoblastoma in China: Three-decade changes in epidemiology, clinical features, treatments, and outcomes. Am J Ophthalmol 236: 193–203. https://doi.org/10.1016/j.ajo.2021.09.026LuoYZhouCHeF2022Contemporary update of retinoblastoma in China: Three-decade changes in epidemiology, clinical features, treatments, and outcomesAm J Ophthalmol236193203https://doi.org/10.1016/j.ajo.2021.09.026Search in Google Scholar
Mahmood N, Arakelian A, Cheishvili D et al (2020) S-adenosylmethionine in combination with decitabine shows enhanced anti-cancer effects in repressing breast cancer growth and metastasis. J Cell Mol Med 24:10322–10337. https://doi.org/10.1111/jcmm.15642MahmoodNArakelianACheishviliD2020S-adenosylmethionine in combination with decitabine shows enhanced anti-cancer effects in repressing breast cancer growth and metastasisJ Cell Mol Med241032210337https://doi.org/10.1111/jcmm.15642Search in Google Scholar
Parashar S, Cheishvili D, Arakelian A et al (2015) S-adenosylmethionine blocks osteosarcoma cells proliferation and invasion in vitro and tumor metastasis in vivo: Therapeutic and diagnostic clinical applications. Cancer Med 4:732–744. https://doi.org/10.1002/cam4.386ParasharSCheishviliDArakelianA2015S-adenosylmethionine blocks osteosarcoma cells proliferation and invasion in vitro and tumor metastasis in vivo: Therapeutic and diagnostic clinical applicationsCancer Med4732744https://doi.org/10.1002/cam4.386Search in Google Scholar
Pascual-Pasto G, Bazan-Peregrino M, Olaciregui NG et al. (2019) Therapeutic targeting of the Rb1 Pathway in retinoblastoma with the oncolytic adenovirus Vcn-01. Sci Transl Med 11:eaat9321. https://doi.org/10.1126/scitranslmed.aat9321Pascual-PastoGBazan-PeregrinoMOlacireguiNG2019Therapeutic targeting of the Rb1 Pathway in retinoblastoma with the oncolytic adenovirus Vcn-01Sci Transl Med11eaat9321. https://doi.org/10.1126/scitranslmed.aat9321Search in Google Scholar
Perugorria MJ, Olaizola P, Labiano I et al (2019) Wnt-beta-catenin signalling in liver development, health and disease. Nat Rev Gastroenterol Hepatol 16:121–136. https://doi.org/10.1038/s41575-018-0075-9PerugorriaMJOlaizolaPLabianoI2019Wnt-beta-catenin signalling in liver development, health and diseaseNat Rev Gastroenterol Hepatol16121136https://doi.org/10.1038/s41575-018-0075-9Search in Google Scholar
Singh V, Walter V, Elcheva I et al (2023) Global role of Igf2bp1 in controlling the expression of Wnt/Β-Catenin-regulated genes in colorectal cancer cells. Front Cell Dev Biol 11:1236356. https://doi.org/10.3389/fcell.2023.1236356SinghVWalterVElchevaI2023Global role of Igf2bp1 in controlling the expression of Wnt/Β-Catenin-regulated genes in colorectal cancer cellsFront Cell Dev Biol111236356https://doi.org/10.3389/fcell.2023.1236356Search in Google Scholar
Spitzner M, Emons G, Schütz KB et al (2021) Inhibition of Wnt/β-catenin signaling sensitizes esophageal cancer cells to chemoradiotherapy. Int J Mol Sci 22:10301. https://doi.org/10.3390/ijms221910301SpitznerMEmonsGSchützKB2021Inhibition of Wnt/β-catenin signaling sensitizes esophageal cancer cells to chemoradiotherapyInt J Mol Sci2210301https://doi.org/10.3390/ijms221910301Search in Google Scholar
Vincenzi B, Russo A, Terenzio A et al (2018) The use of same in chemotherapy-induced liver injury. Crit Rev Oncol Hematol 130:70–77. https://doi.org/10.1016/j.critrevonc.2018.06.019VincenziBRussoATerenzioA2018The use of same in chemotherapy-induced liver injuryCrit Rev Oncol Hematol1307077https://doi.org/10.1016/j.critrevonc.2018.06.019Search in Google Scholar
Yan H, Li M, Zhang Z et al (2021) [Analysis of fundus examination results in 8 808 pediatric patients in Northwest China]. Zhonghua Yan Ke Za Zhi 10:777–783. https://doi.org/10.3760/cma.j.cn112142-20201217-00823YanHLiMZhangZ2021[Analysis of fundus examination results in 8 808 pediatric patients in Northwest China]Zhonghua Yan Ke Za Zhi10777783https://doi.org/10.3760/cma.j.cn112142-20201217-00823Search in Google Scholar
Zsigrai S, Kalmár A, Nagy ZB et al (2020) S-adenosylmethionine treatment of colorectal cancer cell lines alters DNA methylation, DNA repair and tumor progression-related gene expression. Cells 9:1864. https://doi.org/10.3390/cells9081864ZsigraiSKalmárANagyZB2020S-adenosylmethionine treatment of colorectal cancer cell lines alters DNA methylation, DNA repair and tumor progression-related gene expressionCells91864https://doi.org/10.3390/cells9081864Search in Google Scholar