INFORMAZIONI SU QUESTO ARTICOLO

Cita

Abomaray FM, Al Jumah MA, Kalionis B et al (2015) Human chorionic villous mesenchymal stem cells modify the functions of human dendritic cells, and induce an anti-inflammatory pheno-type in CD1+ dendritic cells. Stem Cell Rev Rep 11:423–441. https://doi.org/10.1007/s12015-014-9562-8 AbomarayFM Al JumahMA KalionisB 2015 Human chorionic villous mesenchymal stem cells modify the functions of human dendritic cells, and induce an anti-inflammatory pheno-type in CD1+ dendritic cells Stem Cell Rev Rep 11 423 441 https://doi.org/10.1007/s12015-014-9562-8Search in Google Scholar

Aldebert D, Diallo M, Niang M et al (2007) Differences in circulating dendritic cell subtypes in peripheral, placental and cord blood in African pregnant women. J Reprod Immunol 73:11–19. https://doi.org/10.1016/j.jri.2006.05.002 AldebertD DialloM NiangM 2007 Differences in circulating dendritic cell subtypes in peripheral, placental and cord blood in African pregnant women J Reprod Immunol 73 11 19 https://doi.org/10.1016/j.jri.2006.05.002Search in Google Scholar

Ali N, Zirak B, Rodriguez RS et al (2017) Regulatory T cells in skin facilitate epithelial stem cell differentiation. Cell 169:1119–1129. e11. https://doi.org/10.1016/j.cell.2017.05.002 AliN ZirakB RodriguezRS 2017 Regulatory T cells in skin facilitate epithelial stem cell differentiation Cell 169 1119 1129.e11 https://doi.org/10.1016/j.cell.2017.05.002Search in Google Scholar

Allenspach EJ, Lemos MP, Porrett PM et al (2008) Migratory and lymphoid-resident dendritic cells cooperate to efficiently prime naive CD4 T cells. Immunity 29:795–806. https://doi.org/10.1016/j.immuni.2008.08.013 AllenspachEJ LemosMP PorrettPM 2008 Migratory and lymphoid-resident dendritic cells cooperate to efficiently prime naive CD4 T cells Immunity 29 795 806 https://doi.org/10.1016/j.immuni.2008.08.013Search in Google Scholar

Anandasabapathy N, Breton G, Hurley A et al (2015) Efficacy and safety of CDX-301, recombinant human Flt3L, at expanding dendritic cells and hematopoietic stem cells in healthy human volunteers. Bone Marrow Transplant 50:924–930. https://doi.org/10.1038/bmt.2015.74 AnandasabapathyN BretonG HurleyA 2015 Efficacy and safety of CDX-301, recombinant human Flt3L, at expanding dendritic cells and hematopoietic stem cells in healthy human volunteers Bone Marrow Transplant 50 924 930 https://doi.org/10.1038/bmt.2015.74Search in Google Scholar

Anderson DA 3rd, Murphy KM, Briseno CG (2018) Development, diversity, and function of dendritic cells in mouse and human. Cold Spring Harb Perspect Biol 10:a028613. https://doi.org/10.1101/cshperspect.a028613 AndersonDA3rd MurphyKM BrisenoCG 2018 Development, diversity, and function of dendritic cells in mouse and human Cold Spring Harb Perspect Biol 10 a028613 https://doi.org/10.1101/cshperspect.a028613Search in Google Scholar

Anderson DA, Dutertre CA, Ginhoux F et al (2021) Genetic models of human and mouse dendritic cell development and function. Nat Rev Immunol 21:101–115. https://doi.org/10.1038/s41577-020-00413-x AndersonDA DutertreCA GinhouxF 2021 Genetic models of human and mouse dendritic cell development and function Nat Rev Immunol 21 101 115 https://doi.org/10.1038/s41577-020-00413-xSearch in Google Scholar

Arpaia N, Green JA, Moltedo B et al (2015) A distinct function of regulatory T cells in tissue protection. Cell 162:1078–1089. https://doi.org/10.1016/j.cell.2015.08.021 ArpaiaN GreenJA MoltedoB 2015 A distinct function of regulatory T cells in tissue protection Cell 162 1078 1089 https://doi.org/10.1016/j.cell.2015.08.021Search in Google Scholar

Askelund K, Liddell HS, Zanderigo AM et al (2004) CD83+ dendritic cells in the decidua of women with recurrent miscarriage and normal pregnancy. Placenta 25:140–145. https://doi.org/10.1016/s0143-4004(03)00182-6 AskelundK LiddellHS ZanderigoAM 2004 CD83+ dendritic cells in the decidua of women with recurrent miscarriage and normal pregnancy Placenta 25 140 145 https://doi.org/10.1016/s0143-4004(03)00182-6Search in Google Scholar

Bachy V, Williams DJ, Ibrahim MAA (2008) Altered dendritic cell function in normal pregnancy. J Reprod Immunol 78:11–21. https://doi.org/10.1016/j.jri.2007.09.004 BachyV WilliamsDJ IbrahimMAA 2008 Altered dendritic cell function in normal pregnancy J Reprod Immunol 78 11 21 https://doi.org/10.1016/j.jri.2007.09.004Search in Google Scholar

Bajana S, Turner S, Paul J et al (2016) IRF4 and IRF8 act in CD11c+ cells to regulate terminal differentiation of lung tissue dendritic cells. J Immunol 196:1666–1677. https://doi.org/10.4049/jimmunol.1501870 BajanaS TurnerS PaulJ 2016 IRF4 and IRF8 act in CD11c+ cells to regulate terminal differentiation of lung tissue dendritic cells J Immunol 196 1666 1677 https://doi.org/10.4049/jimmunol.1501870Search in Google Scholar

Balan S, Saxena M, Bhardwaj N (2019) Dendritic cell subsets and locations. Int Rev Cell Mol Biol 348:1–68. https://doi.org/10.1016/bs.ircmb.2019.07.004 BalanS SaxenaM BhardwajN 2019 Dendritic cell subsets and locations Int Rev Cell Mol Biol 348 1 68 https://doi.org/10.1016/bs.ircmb.2019.07.004Search in Google Scholar

Banchereau J, Briere F, Caux C et al (2000) Immunobiology of dendritic cells. Annu Rev Immunol 18:767–811. https://doi.org/10.1146/annurev.immunol.18.1.767 BanchereauJ BriereF CauxC 2000 Immunobiology of dendritic cells Annu Rev Immunol 18 767 811 https://doi.org/10.1146/annurev.immunol.18.1.767Search in Google Scholar

Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392:245–252. https://doi.org/10.1038/32588 BanchereauJ SteinmanRM 1998 Dendritic cells and the control of immunity Nature 392 245 252 https://doi.org/10.1038/32588Search in Google Scholar

Barrientos G, Tirado-Gonzalez I, Klapp BF et al (2009) The impact of dendritic cells on angiogenic responses at the fetal–maternal interface. J Reprod Immunol 83:85–94. https://doi.org/10.1016/j.jri.2009.07.011 BarrientosG Tirado-GonzalezI KlappBF 2009 The impact of dendritic cells on angiogenic responses at the fetal–maternal interface J Reprod Immunol 83 85 94 https://doi.org/10.1016/j.jri.2009.07.011Search in Google Scholar

Bartmann C, Segerer SE, Rieger L et al (2014) Quantification of the predominant immune cell populations in decidua throughout human pregnancy. Am J Reprod Immunol 71:109–119. https://doi.org/10.1111/aji.12185 BartmannC SegererSE RiegerL 2014 Quantification of the predominant immune cell populations in decidua throughout human pregnancy Am J Reprod Immunol 71 109 119 https://doi.org/10.1111/aji.12185Search in Google Scholar

Benirschke K, Burton GJ, Baergen RN (2012) Pathology of the human placenta. Springer-Verlag, Berlin, Heidelberg. BenirschkeK BurtonGJ BaergenRN 2012 Pathology of the human placenta Springer-Verlag Berlin, HeidelbergSearch in Google Scholar

Benschop RJ (1993) Beta 2-adrenergic stimulation causes detachment of natural killer cells from cultured endothelium. Eur J Immunol 23:3242–3247. https://doi.org/10.1002/eji.1830231230 BenschopRJ 1993 Beta 2-adrenergic stimulation causes detachment of natural killer cells from cultured endothelium Eur J Immunol 23 3242 3247 https://doi.org/10.1002/eji.1830231230Search in Google Scholar

Bhardwaj N, Pavlick A, Ernstoff M et al (2016) A Phase II randomized study of CDX-1401, a dendritic cell targeting NY-ESO-1 vaccine, in patients with malignant melanoma pre-treated with recombinant CDX-301, a recombinant human Flt3 ligand. J Clin Oncol 34:9589–9589. http://dx.doi.org/10.1200/JCO.2016.34.15_suppl.9589 BhardwajN PavlickA ErnstoffM 2016 A Phase II randomized study of CDX-1401, a dendritic cell targeting NY-ESO-1 vaccine, in patients with malignant melanoma pre-treated with recombinant CDX-301, a recombinant human Flt3 ligand J Clin Oncol 34 9589 9589 http://dx.doi.org/10.1200/JCO.2016.34.15_suppl.9589Search in Google Scholar

Bilbo SD, Dhabhar FS, Viswanathan K (2002) Short day lengths augment stress-induced leukocyte trafficking and stress-induced enhancement of skin immune function. Proc Natl Acad Sci U S A 99:4067–4072. https://doi.org/10.1073/pnas.062001899 BilboSD DhabharFS ViswanathanK 2002 Short day lengths augment stress-induced leukocyte trafficking and stress-induced enhancement of skin immune function Proc Natl Acad Sci U S A 99 4067 4072 https://doi.org/10.1073/pnas.062001899Search in Google Scholar

Bird L (2017) Plasmacytoid dendritic cells: Division of labour. Nat Rev Immunol 18:2–3. https://doi.org/10.1038/nri.2017.153 BirdL 2017 Plasmacytoid dendritic cells: Division of labour Nat Rev Immunol 18 2 3 https://doi.org/10.1038/nri.2017.153Search in Google Scholar

Bizargity P, Del Rio R, Phillippe M et al (2009) Resistance to lipopolysaccharide-induced preterm delivery mediated by regulatory T cell function in mice. Biol Reprod 80:874–881. https://doi.org/10.1095/biolreprod.108.074294 BizargityP Del RioR PhillippeM 2009 Resistance to lipopolysaccharide-induced preterm delivery mediated by regulatory T cell function in mice Biol Reprod 80 874 881 https://doi.org/10.1095/biolreprod.108.074294Search in Google Scholar

Blois S, Tometten M, Kandil J et al (2005) Intercellular adhesion molecule-1/LFA-1 cross talk is a proximate mediator capable of disrupting immune integration and tolerance mechanism at the feto-maternal interface in murine pregnancies. J Immunol 174:1820–1829. https://doi.org/10.4049/jimmunol.174.4.1820 BloisS TomettenM KandilJ 2005 Intercellular adhesion molecule-1/LFA-1 cross talk is a proximate mediator capable of disrupting immune integration and tolerance mechanism at the feto-maternal interface in murine pregnancies J Immunol 174 1820 1829 https://doi.org/10.4049/jimmunol.174.4.1820Search in Google Scholar

Blois SM, Alba Soto CD, Tometten M et al (2004) Lineage, maturity, and phenotype of uterine murine dendritic cells throughout gestation indicate a protective role in maintaining pregnancy. Biol Reprod 70:1018–1023. https://doi.org/10.1095/biolreprod.103.022640 BloisSM Alba SotoCD TomettenM 2004 Lineage, maturity, and phenotype of uterine murine dendritic cells throughout gestation indicate a protective role in maintaining pregnancy Biol Reprod 70 1018 1023 https://doi.org/10.1095/biolreprod.103.022640Search in Google Scholar

Blois SM, Kammerer U, Soto CA et al (2007) Dendritic cells: Key to fetal tolerance? Biol Reprod 77:590–598. https://doi.org/10.1095/biolreprod.107.060632 BloisSM KammererU SotoCA 2007 Dendritic cells: Key to fetal tolerance? Biol Reprod 77 590 598 https://doi.org/10.1095/biolreprod.107.060632Search in Google Scholar

Blois SM, Klapp BF, Barrientos G (2011) Decidualization and angio-genesis in early pregnancy: Unravelling the functions of DC and NK cells. J Reprod Immunol 88:86–92. https://doi.org/10.1016/j.jri.2010.11.002 BloisSM KlappBF BarrientosG 2011 Decidualization and angio-genesis in early pregnancy: Unravelling the functions of DC and NK cells J Reprod Immunol 88 86 92 https://doi.org/10.1016/j.jri.2010.11.002Search in Google Scholar

Boltjes A, Van Wijk F (2014) Human dendritic cell functional specialization in steady-state and inflammation. Front Immunol 5:131. https://doi.org/10.3389/fimmu.2014.00131 BoltjesA Van WijkF 2014 Human dendritic cell functional specialization in steady-state and inflammation Front Immunol 5 131 https://doi.org/10.3389/fimmu.2014.00131Search in Google Scholar

Bonifaz L, Bonnyay D, Mahnke K et al (2002) Efficient targeting of protein antigen to the dendritic cell receptor DEC-205 in the steady state leads to antigen presentation on major histocompatibility complex class I products and peripheral CD8+ T cell tolerance. J Exp Med 196:1627–1638. https://doi.org/10.1084/jem.20021598 BonifazL BonnyayD MahnkeK 2002 Efficient targeting of protein antigen to the dendritic cell receptor DEC-205 in the steady state leads to antigen presentation on major histocompatibility complex class I products and peripheral CD8+ T cell tolerance J Exp Med 196 1627 1638 https://doi.org/10.1084/jem.20021598Search in Google Scholar

Bosch JA (2003) Acute stress evokes selective mobilization of T cells that differ in chemokine receptor expression: A potential pathway linking immunologic reactivity to cardiovascular disease. Brain Behav Immun 17:251–259. https://doi.org/10.1016/s0889-1591(03)00054-0 BoschJA 2003 Acute stress evokes selective mobilization of T cells that differ in chemokine receptor expression: A potential pathway linking immunologic reactivity to cardiovascular disease Brain Behav Immun 17 251 259 https://doi.org/10.1016/s0889-1591(03)00054-0Search in Google Scholar

Broggi A, Zanoni I, Granucci F (2013) Migratory conventional dendritic cells in the induction of peripheral T cell tolerance. J Leukoc Biol 94:903–911. https://doi.org/10.1189/jlb.0413222 BroggiA ZanoniI GranucciF 2013 Migratory conventional dendritic cells in the induction of peripheral T cell tolerance J Leukoc Biol 94 903 911 https://doi.org/10.1189/jlb.0413222Search in Google Scholar

Burzyn D, Kuswanto W, Kolodin D et al (2013) A special population of regulatory T cells potentiates muscle repair. Cell 155:1282–1295. https://doi.org/10.1016/j.cell.2013.10.054 BurzynD KuswantoW KolodinD 2013 A special population of regulatory T cells potentiates muscle repair Cell 155 1282 1295 https://doi.org/10.1016/j.cell.2013.10.054Search in Google Scholar

Butts CL, Shukair SA, Duncan KM et al (2007) Progesterone inhibits mature rat dendritic cells in a receptor-mediated fashion. Int Immunol 19:287–296. https://doi.org/10.1093/intimm/dxl145 ButtsCL ShukairSA DuncanKM 2007 Progesterone inhibits mature rat dendritic cells in a receptor-mediated fashion Int Immunol 19 287 296 https://doi.org/10.1093/intimm/dxl145Search in Google Scholar

Cabeza-Cabrerizo M, Cardoso A, Minutti CM (2021) Dendritic cells revisited. Annu Rev Immunol 39:131–166. https://doi.org/10.1146/annurev-immunol-061020-053707 Cabeza-CabrerizoM CardosoA MinuttiCM 2021 Dendritic cells revisited Annu Rev Immunol 39 131 166 https://doi.org/10.1146/annurev-immunol-061020-053707Search in Google Scholar

Cappelletti M, Della Bella S, Ferrazzi E et al (2016) Inflammation and preterm birth. J Leukoc Biol 99:67–78. https://doi.org/10.1189/jlb.3MR0615-272RR CappellettiM Della BellaS FerrazziE 2016 Inflammation and preterm birth J Leukoc Biol 99 67 78 https://doi.org/10.1189/jlb.3MR0615-272RRSearch in Google Scholar

Carlson SL, Fox S, Abell KM (1997) Catecholaminemodulation of lymphocyte homing to lymphoid tissues. Brain Behav Immun 11:307–320. https://doi.org/10.1006/brbi.1997.0501 CarlsonSL FoxS AbellKM 1997 Catecholaminemodulation of lymphocyte homing to lymphoid tissues Brain Behav Immun 11 307 320 https://doi.org/10.1006/brbi.1997.0501Search in Google Scholar

Ceppi M, Pereira PM, Dunand-Sauthier I et al (2009) MicroRNA-155 modulates the interleukin-1 signaling pathway in activated human monocyte-derived dendritic cells. Proc Natl Acad Sci U S A 106: 2735–2740. https://doi.org/10.1073/pnas.0811073106 CeppiM PereiraPM Dunand-SauthierI 2009 MicroRNA-155 modulates the interleukin-1 signaling pathway in activated human monocyte-derived dendritic cells Proc Natl Acad Sci U S A 106 2735 2740 https://doi.org/10.1073/pnas.0811073106Search in Google Scholar

Chang WL, Liu YW, Dang YL et al (2018) PLAC8, a new marker for human interstitial extravillous trophoblast cells, promotes their invasion and migration. Development 145:dev148932. https://doi.org/10.1242/dev.148932 ChangWL LiuYW DangYL 2018 PLAC8, a new marker for human interstitial extravillous trophoblast cells, promotes their invasion and migration Development 145 dev148932. https://doi.org/10.1242/dev.148932Search in Google Scholar

Chorny A, Gonzalez-Rey E, Delgado M (2006) Regulation of dendritic cell differentiation by vasoactive intestinal peptide: Therapeutic applications on autoimmunity and transplantation. Ann NY Acad Sci 1088:187–194. https://doi.org/10.1196/annals.1366.004 ChornyA Gonzalez-ReyE DelgadoM 2006 Regulation of dendritic cell differentiation by vasoactive intestinal peptide: Therapeutic applications on autoimmunity and transplantation Ann NY Acad Sci 1088 187 194 https://doi.org/10.1196/annals.1366.004Search in Google Scholar

Collin M, Bigley V (2018) Human dendritic cell subsets: An update. Immunology 154:3–20. https://doi.org/10.1111/imm.12888 CollinM BigleyV 2018 Human dendritic cell subsets: An update Immunology 154 3 20 https://doi.org/10.1111/imm.12888Search in Google Scholar

Collin M, Milne P (2016) Langerhans cell origin and regulation. Curr Opin Hematol 23:28–35. https://doi.org/10.1097%2FMOH.0000000000000202 CollinM MilneP 2016 Langerhans cell origin and regulation Curr Opin Hematol 23 28 35 https://doi.org/10.1097%2FMOH.0000000000000202Search in Google Scholar

Collins MK, Tay CS, Erlebacher A (2009) Dendritic cell entrapment within the pregnant uterus inhibits immune surveillance of the maternal/fetal interface in mice. J Clin Invest 119:2062–2073. https://doi.org/10.1172/jci38714 CollinsMK TayCS ErlebacherA 2009 Dendritic cell entrapment within the pregnant uterus inhibits immune surveillance of the maternal/fetal interface in mice J Clin Invest 119 2062 2073 https://doi.org/10.1172/jci38714Search in Google Scholar

Coombes JL, Powrie F (2008) Dendritic cells in intestinal immune regulation. Nat Rev Immunol 8:435–446. https://doi.org/10.1038/nri2335 CoombesJL PowrieF 2008 Dendritic cells in intestinal immune regulation Nat Rev Immunol 8 435 446 https://doi.org/10.1038/nri2335Search in Google Scholar

Cordeau M, Herblot S, Charrier E et al (2012) Defects in CD54 and CD86 up-regulation by plasmacytoid dendritic cells during pregnancy. Immunol Invest 41:497–506. https://doi.org/10.3109/08820139.2012.682243 CordeauM HerblotS CharrierE 2012 Defects in CD54 and CD86 up-regulation by plasmacytoid dendritic cells during pregnancy Immunol Invest 41 497 506 https://doi.org/10.3109/08820139.2012.682243Search in Google Scholar

Darmochwal-Kolarz D (2005) Pre-eclampsia: Immunological aspects-a role of adhesion molecules, cytokines, dendritic cells, MHC antigens and auto-antibodies. Curr Womens Health Rev 1:237–242. http://dx.doi.org/10.2174/157340405774575204 Darmochwal-KolarzD 2005 Pre-eclampsia: Immunological aspects-a role of adhesion molecules, cytokines, dendritic cells, MHC antigens and auto-antibodies Curr Womens Health Rev 1 237 242 http://dx.doi.org/10.2174/157340405774575204Search in Google Scholar

Darmochwal-Kolarz D, Kludka-Sternik M, Kolarz B et al (2013) The expression of B7-H1 and B7-H4 co-stimulatory molecules on myeloid and plasmacytoid dendritic cells in pre-eclampsia and normal pregnancy. J Reprod Immunol 99:33–38. https://doi.org/10.1016/j.jri.2013.04.004 Darmochwal-KolarzD Kludka-SternikM KolarzB 2013 The expression of B7-H1 and B7-H4 co-stimulatory molecules on myeloid and plasmacytoid dendritic cells in pre-eclampsia and normal pregnancy J Reprod Immunol 99 33 38 https://doi.org/10.1016/j.jri.2013.04.004Search in Google Scholar

Darmochwal-Kolarz D, Rolinski J, Tabarkiewicz J (2003) Myeloid and lymphoid dendritic cells in normal pregnancy and preeclampsia. Clin Exp Immunol 132:339–344. https://doi.org/10.1046%2Fj.1365-2249.2003.02136.x Darmochwal-KolarzD RolinskiJ TabarkiewiczJ 2003 Myeloid and lymphoid dendritic cells in normal pregnancy and preeclampsia Clin Exp Immunol 132 339 344 https://doi.org/10.1046%2Fj.1365-2249.2003.02136.xSearch in Google Scholar

Darmochwal-Kolarz DA, Kludka-Sternik M, Chmielewski T et al (2012) The expressions of CD 200 and CD 200 R molecules on myeloid and lymphoid dendritic cells in pre-eclampsia and normal pregnancy. Am J Reprod Immunol 67:474–481. https://doi.org/10.1111/j.1600-0897.2012.01126.x Darmochwal-KolarzDA Kludka-SternikM ChmielewskiT 2012 The expressions of CD 200 and CD 200 R molecules on myeloid and lymphoid dendritic cells in pre-eclampsia and normal pregnancy Am J Reprod Immunol 67 474 481 https://doi.org/10.1111/j.1600-0897.2012.01126.xSearch in Google Scholar

Dauven D, Ehrentraut S, Langwisch S et al (2016) Immune modulatory effects of human chorionic gonadotropin on dendritic cells supporting fetal survival in murine pregnancy. Front Endocrinol 7:146. https://doi.org/10.3389/fendo.2016.00146 DauvenD EhrentrautS LangwischS 2016 Immune modulatory effects of human chorionic gonadotropin on dendritic cells supporting fetal survival in murine pregnancy Front Endocrinol 7 146 https://doi.org/10.3389/fendo.2016.00146Search in Google Scholar

de Jong MA, Geijtenbeek TB (2010) Langerhans cells in innate defense against pathogens. Trends Immunol 31:452–459. https://doi.org/10.1016/j.it.2010.08.002 de JongMA GeijtenbeekTB 2010 Langerhans cells in innate defense against pathogens Trends Immunol 31 452 459 https://doi.org/10.1016/j.it.2010.08.002Search in Google Scholar

Della Bella S, Giannelli S, Cozzi V et al (2011) Incomplete activation of peripheral blood dendritic cells during healthy human pregnancy. Clin Exp Immunol 164:180–192. https://doi.org/10.1111/j.1365-2249.2011.04330.x Della BellaS GiannelliS CozziV 2011 Incomplete activation of peripheral blood dendritic cells during healthy human pregnancy Clin Exp Immunol 164 180 192 https://doi.org/10.1111/j.1365-2249.2011.04330.xSearch in Google Scholar

Dhabhar FS (2008) Enhancing versus suppressive effects of stress on immune function: Implications for immunoprotection versus immunopathology. Allergy Asthma Clin Immunol 4:2–11. https://doi.org/10.1186/1710-1492-4-1-2 DhabharFS 2008 Enhancing versus suppressive effects of stress on immune function: Implications for immunoprotection versus immunopathology Allergy Asthma Clin Immunol 4 2 11 https://doi.org/10.1186/1710-1492-4-1-2Search in Google Scholar

Dhabhar FS, Miller AH, McEwen BS et al (1996) Stress-induced changes in blood leukocyte distribution-role of adrenal steroid hormones. J Immunol 157:1638–1644. https://doi.org/10.4049/jimmunol.157.4.1638 DhabharFS MillerAH McEwenBS 1996 Stress-induced changes in blood leukocyte distribution-role of adrenal steroid hormones J Immunol 157 1638 1644 https://doi.org/10.4049/jimmunol.157.4.1638Search in Google Scholar

Dietl J, Hönig A, Kämmerer U et al (2006) Natural killer cells and dendritic cells at the human feto-maternal interface: An effective cooperation? Placenta 27:341–347. https://doi.org/10.1016/j.placenta.2005.05.001 DietlJ HönigA KämmererU 2006 Natural killer cells and dendritic cells at the human feto-maternal interface: An effective cooperation? Placenta 27 341 347 https://doi.org/10.1016/j.placenta.2005.05.001Search in Google Scholar

Ding Y, Wilkinson A, Idris A et al (2014) FLT3-ligand treatment of humanized mice results in the generation of large numbers of CD141+ and CD1c+ dendritic cells in vivo. J Immunol 192:1982–1989. https://doi.org/10.4049/jimmunol.1302391 DingY WilkinsonA IdrisA 2014 FLT3-ligand treatment of humanized mice results in the generation of large numbers of CD141+ and CD1c+ dendritic cells in vivo J Immunol 192 1982 1989 https://doi.org/10.4049/jimmunol.1302391Search in Google Scholar

Domínguez PM, Ardavín C (2010) Differentiation and function of mouse monocyte-derived dendritic cells in steady state and inflammation. Immunol Rev 234:90–104. https://doi.org/10.1111/j.0105-2896.2009.00876.x DomínguezPM ArdavínC 2010 Differentiation and function of mouse monocyte-derived dendritic cells in steady state and inflammation Immunol Rev 234 90 104 https://doi.org/10.1111/j.0105-2896.2009.00876.xSearch in Google Scholar

Domogalla SS, Rostan MP, Raker PV et al (2017) Tolerance through education: How tolerogenic dendritic cells shape immunity. Front Immunol 8:1764. https://doi.org/10.3389/fimmu.2017.01764 DomogallaSS RostanMP RakerPV 2017 Tolerance through education: How tolerogenic dendritic cells shape immunity Front Immunol 8 1764 https://doi.org/10.3389/fimmu.2017.01764Search in Google Scholar

Du MR, Guo PF, Piao HL et al (2014) Embryonic trophoblasts induce decidual regulatory T cell differentiation and maternal–fetal tolerance through thymic stromal lymphopoietin instructing dendritic cells. J Immunol 192:1502–1511. https://doi.org/10.4049/jimmunol.1203425 DuMR GuoPF PiaoHL 2014 Embryonic trophoblasts induce decidual regulatory T cell differentiation and maternal–fetal tolerance through thymic stromal lymphopoietin instructing dendritic cells J Immunol 192 1502 1511 https://doi.org/10.4049/jimmunol.1203425Search in Google Scholar

Ehrentraut S, Sauss K, Neumeister R et al (2019) Human miscarriage is associated with dysregulations in peripheral blood-derived myeloid dendritic cell subsets. Front Immunol 10:2440. https://doi.org/10.3389/fimmu.2019.02440 EhrentrautS SaussK NeumeisterR 2019 Human miscarriage is associated with dysregulations in peripheral blood-derived myeloid dendritic cell subsets Front Immunol 10 2440https://doi.org/10.3389/fimmu.2019.02440Search in Google Scholar

Eisenbarth SC (2019) Dendritic cell subsets in T cell programming: Location dictates function. Nat Rev Immunol 19:89–103. https://doi.org/10.1038/s41577-018-0088-1 EisenbarthSC 2019 Dendritic cell subsets in T cell programming: Location dictates function Nat Rev Immunol 19 89 103 https://doi.org/10.1038/s41577-018-0088-1Search in Google Scholar

El Hachem H, Crepaux V, May-Panloup P et al (2017) Recurrent pregnancy loss: Current perspectives. Int J Womens Health 9:331–345. http://dx.doi.org/10.2147/IJWH.S100817 El HachemH CrepauxV May-PanloupP 2017 Recurrent pregnancy loss: Current perspectives Int J Womens Health 9 331 345 http://dx.doi.org/10.2147/IJWH.S100817Search in Google Scholar

Elftman MD, Norbury CC, Bonneau RH et al (2007) Corticosterone impairs dendritic cell maturation and function. Immunology 122:279–290. https://doi.org/10.1111%2Fj.1365-2567.2007.02637.x ElftmanMD NorburyCC BonneauRH 2007 Corticosterone impairs dendritic cell maturation and function Immunology 122 279 290 https://doi.org/10.1111%2Fj.1365-2567.2007.02637.xSearch in Google Scholar

Ellis JE, Ansari AA, Fett JD (2005) Inhibition of progenitor dendritic cell maturation by plasma from patients with peripartum cardiomyopathy: Role in pregnancy-associated heart disease. Clin Dev Immunol 12:265–273. https://doi.org/10.1080/17402520500304352 EllisJE AnsariAA FettJD 2005 Inhibition of progenitor dendritic cell maturation by plasma from patients with peripartum cardiomyopathy: Role in pregnancy-associated heart disease Clin Dev Immunol 12 265 273 https://doi.org/10.1080/17402520500304352Search in Google Scholar

Escribese MM, Rodríguez-García M, Sperling R et al (2011) Alpha-defensins 1–3 release by dendritic cells is reduced by estrogen. Reprod Biol Endocrinol 9:118. https://doi.org/10.1186/1477-7827-9-118 EscribeseMM Rodríguez-GarcíaM SperlingR 2011 Alpha-defensins 1–3 release by dendritic cells is reduced by estrogen Reprod Biol Endocrinol 9 118https://doi.org/10.1186/1477-7827-9-118Search in Google Scholar

Eskandarian M, Moazzeni SM (2019) Uterine dendritic cells modulation by mesenchymal stem cells provides a protective micro-environment at the feto-maternal interface: Improved pregnancy outcome in abortion-prone mice. Cell J 21:274–280. https://doi.org/10.22074%2Fcellj.2019.6239 EskandarianM MoazzeniSM 2019 Uterine dendritic cells modulation by mesenchymal stem cells provides a protective micro-environment at the feto-maternal interface: Improved pregnancy outcome in abortion-prone mice Cell J 21 274 280 https://doi.org/10.22074%2Fcellj.2019.6239Search in Google Scholar

Fancke B, Suter M, Hochrein H et al (2008) M-CSF: A novel plasmacytoid and conventional dendritic cell poietin. Blood 111:150–159. https://doi.org/10.1182/blood-2007-05-089292 FanckeB SuterM HochreinH 2008 M-CSF: A novel plasmacytoid and conventional dendritic cell poietin Blood 111 150 159 https://doi.org/10.1182/blood-2007-05-089292Search in Google Scholar

Fang WN, Shi M, Meng CY et al (2016) The balance between conventional DCs and plasmacytoid DCs is pivotal for immunological tolerance during pregnancy in the mouse. Sci Rep 6:26984. https://doi.org/10.1038/srep26984 FangWN ShiM MengCY 2016 The balance between conventional DCs and plasmacytoid DCs is pivotal for immunological tolerance during pregnancy in the mouse Sci Rep 6 26984 https://doi.org/10.1038/srep26984Search in Google Scholar

Farah O, Nguyen C, Tekkatte C et al (2020) Trophoblast lineage-specific differentiation and associated alterations in preeclampsia and fetal growth restriction. Placenta 102:4–9. https://doi.org/10.1016/j.placenta.2020.02.007 FarahO NguyenC TekkatteC 2020 Trophoblast lineage-specific differentiation and associated alterations in preeclampsia and fetal growth restriction Placenta 102 4 9 https://doi.org/10.1016/j.placenta.2020.02.007Search in Google Scholar

Fauci AS, Dale DC (1974) The effect of in vivo hydrocortisone on subpopulations of human lymphocytes. J Clin Invest 53:240–246. https://doi.org/10.1172/jci107544 FauciAS DaleDC 1974 The effect of in vivo hydrocortisone on subpopulations of human lymphocytes J Clin Invest 53 240 246 https://doi.org/10.1172/jci107544Search in Google Scholar

Fauci AS, Dale DC (1975) The effect of hydrocortisone on the kinetics of normal human lymphocytes. Blood 46:235–243. https://doi.org/10.1182/blood.V46.2.235.235 FauciAS DaleDC 1975 The effect of hydrocortisone on the kinetics of normal human lymphocytes Blood 46 235 243 https://doi.org/10.1182/blood.V46.2.235.235Search in Google Scholar

Ferlazzo G, Pack M, Thomas D et al (2004) Distinct roles of IL-12 and IL-15 in human natural killer cell activation by dendritic cells from secondary lymphoid organs. Proc Natl Acad Sci U S A 101:16606–166011. https://doi.org/10.1073/pnas.0407522101 FerlazzoG PackM ThomasD 2004 Distinct roles of IL-12 and IL-15 in human natural killer cell activation by dendritic cells from secondary lymphoid organs Proc Natl Acad Sci U S A 101 16606 166011 https://doi.org/10.1073/pnas.0407522101Search in Google Scholar

Ferris ST, Durai V, Wu R et al (2020) cDC1 prime and are licensed by CD4+ T cells to induce anti-tumour immunity. Nature 584:624–629. https://doi.org/10.1038/s41586-020-2611-3 FerrisST DuraiV WuR 2020 cDC1 prime and are licensed by CD4+ T cells to induce anti-tumour immunity Nature 584 624 629 https://doi.org/10.1038/s41586-020-2611-3Search in Google Scholar

Feuerer M, Herrero L, Cipolletta D et al (2009) Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nat Med 15:930–939. https://doi.org/10.1038/nm.2002 FeuererM HerreroL CipollettaD 2009 Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters Nat Med 15 930 939 https://doi.org/10.1038/nm.2002Search in Google Scholar

Fogg DK, Sibon C, Miled C et al (2006) A clonogenic bone marrow progenitor specific for macrophages and dendritic cells. Science 311:83–87. https://doi.org/10.1126/science.1117729 FoggDK SibonC MiledC 2006 A clonogenic bone marrow progenitor specific for macrophages and dendritic cells Science 311 83 87 https://doi.org/10.1126/science.1117729Search in Google Scholar

Founds SA, Conley YP, Lyons-Weiler JF et al (2009) Altered global gene expression in first trimester placentas of women destined to develop preeclampsia. Placenta 30:15–24. https://doi.org/10.1016/j.placenta.2008.09.015 FoundsSA ConleyYP Lyons-WeilerJF 2009 Altered global gene expression in first trimester placentas of women destined to develop preeclampsia Placenta 30 15 24 https://doi.org/10.1016/j.placenta.2008.09.015Search in Google Scholar

Founds SA, Fallert-Junecko B, Reinhart TA (2013) LAIR2-expressing extravillous trophoblasts associate with maternal spiral arterioles undergoing physiologic conversion. Placenta 34:248–255. https://doi.org/10.1016/j.placenta.2012.09.017 FoundsSA Fallert-JuneckoB ReinhartTA 2013 LAIR2-expressing extravillous trophoblasts associate with maternal spiral arterioles undergoing physiologic conversion Placenta 34 248 255 https://doi.org/10.1016/j.placenta.2012.09.017Search in Google Scholar

Gardner L, Moffett A (2003) Dendritic cells in the human decidua. Biol Reprod 69:1438–1446. https://doi.org/10.1095/biolreprod.103.017574 GardnerL MoffettA 2003 Dendritic cells in the human decidua Biol Reprod 69 1438 1446 https://doi.org/10.1095/biolreprod.103.017574Search in Google Scholar

Garrido-Gimenez C, Alijotas-Reig J (2015) Recurrent miscarriage: Causes, evaluation and management. Postgrad Med J 91:151–162. https://doi.org/10.1136/postgradmedj-2014-132672 Garrido-GimenezC Alijotas-ReigJ 2015 Recurrent miscarriage: Causes, evaluation and management Postgrad Med J 91 151 162 https://doi.org/10.1136/postgradmedj-2014-132672Search in Google Scholar

Geissmann F, Manz MG, Jung S et al (2010) Development of monocytes, macrophages, and dendritic cells. Science 327:656–661. https://doi.org/10.1126/science.1178331 GeissmannF ManzMG JungS 2010 Development of monocytes, macrophages, and dendritic cells Science 327 656 661 https://doi.org/10.1126/science.1178331Search in Google Scholar

Georgantas RW, Hildreth R, Morisot S et al (2007) CD34+ hematopoietic stem-progenitor cell microRNA expression and function: A circuit diagram of differentiation control. Proc Natl Acad Sci U S A 104:2750–2755. https://doi.org/10.1073/pnas.0610983104 GeorgantasRW HildrethR MorisotS 2007 CD34+ hematopoietic stem-progenitor cell microRNA expression and function: A circuit diagram of differentiation control Proc Natl Acad Sci U S A 104 2750 2755 https://doi.org/10.1073/pnas.0610983104Search in Google Scholar

Ginhoux F, Jung S (2014) Monocytes and macrophages: Developmental pathways and tissue homeostasis. Nat Rev Immunol 14:392–404. https://doi.org/10.1038/nri3671 GinhouxF JungS 2014 Monocytes and macrophages: Developmental pathways and tissue homeostasis Nat Rev Immunol 14 392 404 https://doi.org/10.1038/nri3671Search in Google Scholar

Goldenberg RL, Culhane JF, Iams JD et al (2008) Epidemiology and causes of preterm birth. Lancet 371:75–84. https://doi.org/10.1016/s0140-6736(08)60074-4 GoldenbergRL CulhaneJF IamsJD 2008 Epidemiology and causes of preterm birth Lancet 371 75 84 https://doi.org/10.1016/s0140-6736(08)60074-4Search in Google Scholar

Greter M, Helft J, Chow A et al (2012) GM-CSF controls nonlymphoid tissue dendritic cell homeostasis but is dispensable for the differentiation of inflammatory dendritic cells. Immunity 36:1031–1046. https://doi.org/10.1016/j.immuni.2012.03.027 GreterM HelftJ ChowA 2012 GM-CSF controls nonlymphoid tissue dendritic cell homeostasis but is dispensable for the differentiation of inflammatory dendritic cells Immunity 36 1031 1046 https://doi.org/10.1016/j.immuni.2012.03.027Search in Google Scholar

Gu AQ, Li DD, Wei DP et al (2019) Cytochrome P450 26A1 modulates uterine dendritic cells in mice early pregnancy. J Cell Mol Med 23:5403–5414. https://doi.org/10.1111%2Fjcmm.14423 GuAQ LiDD WeiDP 2019 Cytochrome P450 26A1 modulates uterine dendritic cells in mice early pregnancy J Cell Mol Med 23 5403 5414 https://doi.org/10.1111%2Fjcmm.14423Search in Google Scholar

Gu K, Walpole C, Gooneratne S et al (2022) DROSHA but not DICER is required for human haematopoietic stem cell function. Clin Transl Immunology 11:e1361. https://doi.org/10.1002/cti2.1361 GuK WalpoleC GooneratneS 2022 DROSHA but not DICER is required for human haematopoietic stem cell function Clin Transl Immunology 11 e1361https://doi.org/10.1002/cti2.1361Search in Google Scholar

Hackstein H, Taner T, Zahorchak AF et al (2003) Rapamycin inhibits IL-4-induced dendritic cell maturation in vitro and dendritic cell mobilization and function in vivo. Blood 101:4457–4463. https://doi.org/10.1182/blood-2002-11-3370 HacksteinH TanerT ZahorchakAF 2003 Rapamycin inhibits IL-4-induced dendritic cell maturation in vitro and dendritic cell mobilization and function in vivo Blood 101 4457 4463 https://doi.org/10.1182/blood-2002-11-3370Search in Google Scholar

Hashimi ST, Fulcher JA, Chang MH et al (2009) MicroRNA profiling identifies miR-34a and miR-21 and their target genes JAG1 and WNT1 in the coordinate regulation of dendritic cell differentiation. Blood 114:404–414. https://doi.org/10.1182/blood-2008-09-179150 HashimiST FulcherJA ChangMH 2009 MicroRNA profiling identifies miR-34a and miR-21 and their target genes JAG1 and WNT1 in the coordinate regulation of dendritic cell differentiation Blood 114 404 414 https://doi.org/10.1182/blood-2008-09-179150Search in Google Scholar

Hawiger D, Inaba K, Dorsett Y et al (2001) Dendritic cells induce peripheral T cell unresponsiveness under steady state conditions in vivo. J Exp Med 194:769–780. https://doi.org/10.1084/jem.194.6.769 HawigerD InabaK DorsettY 2001 Dendritic cells induce peripheral T cell unresponsiveness under steady state conditions in vivo J Exp Med 194 769 780 https://doi.org/10.1084/jem.194.6.769Search in Google Scholar

Heger L, Hatscher L, Liang C et al (2023) XCR1 expression distinguishes human conventional dendritic cell type 1 with full effector functions from their immediate precursors. Proc Natl Acad Sci U S A 120:e2300343120. https://doi.org/10.1073/pnas.2300343120 HegerL HatscherL LiangC 2023 XCR1 expression distinguishes human conventional dendritic cell type 1 with full effector functions from their immediate precursors Proc Natl Acad Sci U S A 120 e2300343120. https://doi.org/10.1073/pnas.2300343120Search in Google Scholar

Hopkins RA, Connolly JE (2012) The specialized roles of immature and mature dendritic cells in antigen cross-presentation. Immunol Res 53:91–107. https://doi.org/10.1007/s12026-012-8300-z HopkinsRA ConnollyJE 2012 The specialized roles of immature and mature dendritic cells in antigen cross-presentation Immunol Res 53 91 107 https://doi.org/10.1007/s12026-012-8300-zSearch in Google Scholar

Huang C, Zhang H, Chen X (2016) Association of peripheral blood dendritic cells with recurrent pregnancy loss: A case-controlled study. Am J Reprod Immunol 76:326–332. https://doi.org/10.1111/aji.12550 HuangC ZhangH ChenX 2016 Association of peripheral blood dendritic cells with recurrent pregnancy loss: A case-controlled study Am J Reprod Immunol 76 326 332 https://doi.org/10.1111/aji.12550Search in Google Scholar

Huang SJ, Chen CP, Schatz F et al (2008) Pre-eclampsia is associated with dendritic cell recruitment into the uterine decidua. J Pathol 214:328–336. https://doi.org/10.1002/path.2257 HuangSJ ChenCP SchatzF 2008 Pre-eclampsia is associated with dendritic cell recruitment into the uterine decidua J Pathol 214 328 336 https://doi.org/10.1002/path.2257Search in Google Scholar

Huang SJ, Zenclussen AC, Chen CP et al (2010) The implication of aberrant GM-CSF expression in decidual cells in the pathogenesis of preeclampsia. Am J Pathol 177:2472–2482. https://doi.org/10.2353/ajpath.2010.091247 HuangSJ ZenclussenAC ChenCP 2010 The implication of aberrant GM-CSF expression in decidual cells in the pathogenesis of preeclampsia Am J Pathol 177 2472 2482 https://doi.org/10.2353/ajpath.2010.091247Search in Google Scholar

Hubo M, Trinschek B, Kryczanowsky F et al (2013) Costimulatory molecules on immunogenic versus tolerogenic human dendritic cells. Front Immunol 4:82. https://doi.org/10.3389/fimmu.2013.00082 HuboM TrinschekB KryczanowskyF 2013 Costimulatory molecules on immunogenic versus tolerogenic human dendritic cells Front Immunol 4 82https://doi.org/10.3389/fimmu.2013.00082Search in Google Scholar

Huck B, Steck T, Habersack M et al (2005) Pregnancy associated hormones modulate the cytokine production but not the phenotype of PBMC-derived human dendritic cells. Eur J Obstet Gynecol Reprod Biol 122:85–94. https://doi.org/10.1016/j.ejogrb.2005.02.017 HuckB SteckT HabersackM 2005 Pregnancy associated hormones modulate the cytokine production but not the phenotype of PBMC-derived human dendritic cells Eur J Obstet Gynecol Reprod Biol 122 85 94 https://doi.org/10.1016/j.ejogrb.2005.02.017Search in Google Scholar

Hughes GC, Clark EA (2007) Regulation of dendritic cells by female sex steroids: Relevance to immunity and autoimmunity. Autoimmunity 40:470–481. https://doi.org/10.1080/08916930701464764 HughesGC ClarkEA 2007 Regulation of dendritic cells by female sex steroids: Relevance to immunity and autoimmunity Autoimmunity 40 470 481 https://doi.org/10.1080/08916930701464764Search in Google Scholar

Hunt JS, Robertson SA (1996) Uterine macrophages and environmental programming for pregnancy success. J Reprod Immunol 32:1–25. https://doi.org/10.1016/S0165-0378(96)88352-5 HuntJS RobertsonSA 1996 Uterine macrophages and environmental programming for pregnancy success J Reprod Immunol 32 1 25 https://doi.org/10.1016/S0165-0378(96)88352-5Search in Google Scholar

Huppertz B, Kingdom J, Caniggia I et al (2003) Hypoxia favours necrotic versus apoptotic shedding of placental syncytiotropho-blast into the maternal circulation. Placenta 24:181–190. https://doi.org/10.1053/plac.2002.0903 HuppertzB KingdomJ CaniggiaI 2003 Hypoxia favours necrotic versus apoptotic shedding of placental syncytiotropho-blast into the maternal circulation Placenta 24 181 190 https://doi.org/10.1053/plac.2002.0903Search in Google Scholar

Iijima N, Thompson JM, Iwasaki A (2008) Dendritic cells and macrophages in the genitourinary tract. Mucosal Immunol 1:451–459. https://doi.org/10.1038/mi.2008.57 IijimaN ThompsonJM IwasakiA 2008 Dendritic cells and macrophages in the genitourinary tract Mucosal Immunol 1 451 459 https://doi.org/10.1038/mi.2008.57Search in Google Scholar

Ivanova E, Kyurkchiev D, Altankova I et al (2005) CD83+ monocyte-derived dendritic cells are present in human decidua and progesterone induces their differentiation in vitro. Am J Reprod Immunol 53:199–205. https://doi.org/10.1111/j.1600-0897.2005.00266.x IvanovaE KyurkchievD AltankovaI 2005 CD83+ monocyte-derived dendritic cells are present in human decidua and progesterone induces their differentiation in vitro Am J Reprod Immunol 53 199 205 https://doi.org/10.1111/j.1600-0897.2005.00266.xSearch in Google Scholar

Jena MK, Nayak N, Chen K et al (2019) Role of macrophages in pregnancy and related complications. Arch Immunol Ther Exp 67:295–309. https://doi.org/10.1007%2Fs00005-019-00552-7 JenaMK NayakN ChenK 2019 Role of macrophages in pregnancy and related complications Arch Immunol Ther Exp 67 295 309 https://doi.org/10.1007%2Fs00005-019-00552-7Search in Google Scholar

Jeras M, Bergant M, Repnik U et al (2005) In vitro preparation and functional assessment of human monocyte-derived dendritic cells—potential antigen-specific modulators of in vivo immune responses. Transplant Immunol 14:231–244. https://doi.org/10.1016/j.trim.2005.03.012 JerasM BergantM RepnikU 2005 In vitro preparation and functional assessment of human monocyte-derived dendritic cells—potential antigen-specific modulators of in vivo immune responses Transplant Immunol 14 231 244 https://doi.org/10.1016/j.trim.2005.03.012Search in Google Scholar

Johanson TM, Keown AA, Cmero M et al (2015) Drosha controls dendritic cell development by cleaving messenger RNAs encoding inhibitors of myelopoiesis. Nat Immunol 16:1134–1141. https://doi.org/10.1038/ni.3293 JohansonTM KeownAA CmeroM 2015 Drosha controls dendritic cell development by cleaving messenger RNAs encoding inhibitors of myelopoiesis Nat Immunol 16 1134 1141 https://doi.org/10.1038/ni.3293Search in Google Scholar

Jonuleit H, Schmitt E, Schuler G et al (2000) Induction of interleukin 10–producing, nonproliferating CD4+ T cells with regulatory properties by repetitive stimulation with allogeneic immature human dendritic cells. J Exp Med 192:1213–1222. https://doi.org/10.1084/jem.192.9.1213 JonuleitH SchmittE SchulerG 2000 Induction of interleukin 10–producing, nonproliferating CD4+ T cells with regulatory properties by repetitive stimulation with allogeneic immature human dendritic cells J Exp Med 192 1213 1222 https://doi.org/10.1084/jem.192.9.1213Search in Google Scholar

Jung S, Unutmaz D, Wong P et al (2002) In vivo depletion of CD11c+ dendritic cells abrogates priming of CD8+ T cells by exogenous cell-associated antigens. Immunity 17:211–220. https://doi.org/10.1016/s1074-7613(02)00365-5 JungS UnutmazD WongP 2002 In vivo depletion of CD11c+ dendritic cells abrogates priming of CD8+ T cells by exogenous cell-associated antigens Immunity 17 211 220 https://doi.org/10.1016/s1074-7613(02)00365-5Search in Google Scholar

Juretic K, Strbo N, Crncic TB et al (2004) An insight into the dendritic cells at the maternal–fetal interface. Am J Reprod Immunol 52:350–355. https://doi.org/10.1111/j.1600-0897.2004.00232.x JureticK StrboN CrncicTB 2004 An insight into the dendritic cells at the maternal–fetal interface Am J Reprod Immunol 52 350 355 https://doi.org/10.1111/j.1600-0897.2004.00232.xSearch in Google Scholar

Kämmerer U, Eggert AO, Kapp M et al (2003) Unique appearance of proliferating antigen-presenting cells expressing DC-SIGN (CD209) in the decidua of early human pregnancy. Am J Pathol 162:887–896. https://doi.org/10.1016/s0002-9440(10)63884-9 KämmererU EggertAO KappM 2003 Unique appearance of proliferating antigen-presenting cells expressing DC-SIGN (CD209) in the decidua of early human pregnancy Am J Pathol 162 887 896 https://doi.org/10.1016/s0002-9440(10)63884-9Search in Google Scholar

Kammerer U, Kruse A, Barrientos G et al (2008) Role of dendritic cells in the regulation of maternal immune responses to the fetus during mammalian gestation. Immunol Invest 37:499–533. https://doi.org/10.1080/08820130802191334 KammererU KruseA BarrientosG 2008 Role of dendritic cells in the regulation of maternal immune responses to the fetus during mammalian gestation Immunol Invest 37 499 533 https://doi.org/10.1080/08820130802191334Search in Google Scholar

Kämmerer U, Schoppet M, McLellan AD et al (2000) Human decidua contains potent immunostimulatory CD83+ dendritic cells. Am J Pathol 157:159–169. https://doi.org/10.1016%2FS0002-9440(10)64527-0 KämmererU SchoppetM McLellanAD 2000 Human decidua contains potent immunostimulatory CD83+ dendritic cells Am J Pathol 157 159 169 https://doi.org/10.1016%2FS0002-9440(10)64527-0Search in Google Scholar

Kaplan DH (2010) In vivo function of Langerhans cells and dermal dendritic cells. Trends Immunol 31:446–451. https://doi.org/10.1016%2Fj.it.2010.08.006 KaplanDH 2010 In vivo function of Langerhans cells and dermal dendritic cells Trends Immunol 31 446 451 https://doi.org/10.1016%2Fj.it.2010.08.006Search in Google Scholar

Karrich JJ, Jachimowski LC, Libouban M et al (2013) MicroRNA-146a regulates survival and maturation of human plasmacytoid dendritic cells. Blood 122:3001–3009. https://doi.org/10.1182/blood-2012-12-475087 KarrichJJ JachimowskiLC LiboubanM 2013 MicroRNA-146a regulates survival and maturation of human plasmacytoid dendritic cells Blood 122 3001 3009 https://doi.org/10.1182/blood-2012-12-475087Search in Google Scholar

Karsten CM, Behrends J, Wagner AK et al (2009) DC within the pregnant mouse uterus influence growth and functional properties of uterine NK cells. Eur J Immunol 39:2203–2214. https://doi.org/10.1002/eji.200838844 KarstenCM BehrendsJ WagnerAK 2009 DC within the pregnant mouse uterus influence growth and functional properties of uterine NK cells Eur J Immunol 39 2203 2214 https://doi.org/10.1002/eji.200838844Search in Google Scholar

Kashem SW, Haniffa M, Kaplan DH (2017) Antigen-presenting cells in the skin. Annu Rev Immunol 35:469–499. https://doi.org/10.1146/annurev-immunol-051116-052215 KashemSW HaniffaM KaplanDH 2017 Antigen-presenting cells in the skin Annu Rev Immunol 35 469 499 https://doi.org/10.1146/annurev-immunol-051116-052215Search in Google Scholar

Keelan JA, Blumenstein M, Helliwell RJ et al (2003) Cytokines, pros-taglandins and parturition—a review. Placenta 24:S33–S46. https://doi.org/10.1053/plac.2002.0948 KeelanJA BlumensteinM HelliwellRJ 2003 Cytokines, pros-taglandins and parturition—a review Placenta 24 S33 S46 https://doi.org/10.1053/plac.2002.0948Search in Google Scholar

Komi J, Lassila O (2000) Nonsteroidal anti-estrogens inhibit the functional differentiation of human monocyte-derived dendritic cells. Blood 95:2875–2882. https://doi.org/10.1182/blood.V95.9.2875.009k12_2875_2882 KomiJ LassilaO 2000 Nonsteroidal anti-estrogens inhibit the functional differentiation of human monocyte-derived dendritic cells Blood 95 2875 2882 https://doi.org/10.1182/blood.V95.9.2875.009k12_2875_2882Search in Google Scholar

Kovats S (2012) Estrogen receptors regulate an inflammatory pathway of dendritic cell differentiation: Mechanisms and implications for immunity. Horm Behav 62:254–262. https://doi.org/10.1016%2Fj.yhbeh.2012.04.011 KovatsS 2012 Estrogen receptors regulate an inflammatory pathway of dendritic cell differentiation: Mechanisms and implications for immunity Horm Behav 62 254 262 https://doi.org/10.1016%2Fj.yhbeh.2012.04.011Search in Google Scholar

Krey G, Frank P, Shaikly V et al (2008) In vivo dendritic cell depletion reduces breeding efficiency, affecting implantation and early placental development in mice. J Mol Med 86:999–1011. https://doi.org/10.1007/s00109-008-0379-2 KreyG FrankP ShaiklyV 2008 In vivo dendritic cell depletion reduces breeding efficiency, affecting implantation and early placental development in mice J Mol Med 86 999 1011 https://doi.org/10.1007/s00109-008-0379-2Search in Google Scholar

Kwan M, Hazan A, Zhang J et al (2014) Dynamic changes in maternal decidual leukocyte populations from first to second trimester gestation. Placenta 35:1027–1034. https://doi.org/10.1016/j.placenta.2014.09.018 KwanM HazanA ZhangJ 2014 Dynamic changes in maternal decidual leukocyte populations from first to second trimester gestation Placenta 35 1027 1034 https://doi.org/10.1016/j.placenta.2014.09.018Search in Google Scholar

Kwiatek M, Gęca T, Krzyżanowski A et al (2015) Peripheral dendritic cells and CD4+CD25+Foxp3+ regulatory T cells in the first trimester of normal pregnancy and in women with recurrent miscarriage. PLoS One 10:e0124747. https://doi.org/10.1371/journal.pone.0124747ssss KwiatekM GęcaT KrzyżanowskiA 2015 Peripheral dendritic cells and CD4+CD25+Foxp3+ regulatory T cells in the first trimester of normal pregnancy and in women with recurrent miscarriage PLoS One 10 e0124747. https://doi.org/10.1371/journal.pone.0124747ssssSearch in Google Scholar

Lai N, Fu X, Hei G et al (2022) The role of dendritic cell subsets in recurrent spontaneous abortion and the regulatory effect of baicalin on it. J Immunol Res 2022:9693064. https://doi.org/10.1155/2022/9693064 LaiN FuX HeiG 2022 The role of dendritic cell subsets in recurrent spontaneous abortion and the regulatory effect of baicalin on it J Immunol Res 2022 9693064. https://doi.org/10.1155/2022/9693064Search in Google Scholar

Laskarin G, Gulic T, Gacanin LG et al (2018) Assessing whether progesterone-matured dendritic cells are responsible for retention of fertilization products in missed abortion. Med Hypotheses 118:169–173. https://doi.org/10.1016/j.mehy.2018.04.008 LaskarinG GulicT GacaninLG 2018 Assessing whether progesterone-matured dendritic cells are responsible for retention of fertilization products in missed abortion Med Hypotheses 118 169 173 https://doi.org/10.1016/j.mehy.2018.04.008Search in Google Scholar

Laškarin G, Kämmerer U, Rukavina D et al (2007) Antigen-presenting cells and materno-fetal tolerance: An emerging role for dendritic cells. Am J Reprod Immunol 58:255–267. https://doi.org/10.1111/j.1600-0897.2007.00511.x LaškarinG KämmererU RukavinaD 2007 Antigen-presenting cells and materno-fetal tolerance: An emerging role for dendritic cells Am J Reprod Immunol 58 255 267 https://doi.org/10.1111/j.1600-0897.2007.00511.xSearch in Google Scholar

Laškarin G, Redžović A, Rubeša Ž et al (2008) Decidual natural killer cell tuning by autologous dendritic cells. Am J Reprod Immunol 59:433–445. https://doi.org/10.1111/j.1600-0897.2008.00599.x LaškarinG RedžovićA RubešaŽ 2008 Decidual natural killer cell tuning by autologous dendritic cells Am J Reprod Immunol 59 433 445 https://doi.org/10.1111/j.1600-0897.2008.00599.xSearch in Google Scholar

Laskarin G, Redzovic A, Vlastelic I et al (2011) Tumor-associated glycoprotein (TAG-72) is a natural ligand for the C-type lectin-like domain that induces anti-inflammatory orientation of early pregnancy decidual CD1a+ dendritic cells. J Reprod Immunol 88:12–23. https://https://doi.org/10.1016/j.jri.2010.10.001 LaskarinG RedzovicA VlastelicI 2011 Tumor-associated glycoprotein (TAG-72) is a natural ligand for the C-type lectin-like domain that induces anti-inflammatory orientation of early pregnancy decidual CD1a+ dendritic cells J Reprod Immunol 88 12 23 https://https://doi.org/10.1016/j.jri.2010.10.001Search in Google Scholar

Le Gars M, Kay AW, Bayless NL (2016) Increased proinflamma-tory responses of monocytes and plasmacytoid dendritic cells to influenza A virus infection during pregnancy. J Infect Dis 214:1666–1671. https://doi.org/10.1093/infdis/jiw448 Le GarsM KayAW BaylessNL 2016 Increased proinflamma-tory responses of monocytes and plasmacytoid dendritic cells to influenza A virus infection during pregnancy J Infect Dis 214 1666 1671 https://doi.org/10.1093/infdis/jiw448Search in Google Scholar

Lee JY, Lee M, Lee SK (2011) Role of endometrial immune cells in implantation. Clin Exp Reprod Med 38:119. https://doi.org/10.5653%2Fcerm.2011.38.3.119 LeeJY LeeM LeeSK 2011 Role of endometrial immune cells in implantation Clin Exp Reprod Med 38 119https://doi.org/10.5653%2Fcerm.2011.38.3.119Search in Google Scholar

Leno-Durán E, Muñoz-Fernández R, Olivares EG et al (2014) Liaison between natural killer cells and dendritic cells in human gestation. Cell Mol Immunol 11:449–455. https://doi.org/10.1038/cmi.2014.36 Leno-DuránE Muñoz-FernándezR OlivaresEG 2014 Liaison between natural killer cells and dendritic cells in human gestation Cell Mol Immunol 11 449 455 https://doi.org/10.1038/cmi.2014.36Search in Google Scholar

León B, López-Bravo M, Ardavín C (2007) Monocyte-derived dendritic cells formed at the infection site control the induction of protective T helper 1 responses against Leishmania. Immunity 26:519–531. https://doi.org/10.1016/j.immuni.2007.01.017 LeónB López-BravoM ArdavínC 2007 Monocyte-derived dendritic cells formed at the infection site control the induction of protective T helper 1 responses against Leishmania Immunity 26 519 531 https://doi.org/10.1016/j.immuni.2007.01.017Search in Google Scholar

Li J, Huang L, Wang S et al (2019) The prevalence of regulatory T and dendritic cells is altered in peripheral blood of women with pre-eclampsia. Pregnancy Hypertens 17:233–240. https://doi.org/10.1016/j.preghy.2019.07.003 LiJ HuangL WangS 2019 The prevalence of regulatory T and dendritic cells is altered in peripheral blood of women with pre-eclampsia Pregnancy Hypertens 17 233 240 https://doi.org/10.1016/j.preghy.2019.07.003Search in Google Scholar

Li L, Yang J, Jiang Y et al (2015) Activation of decidual invariant natural killer T cells promotes lipopolysaccharide-induced preterm birth. Mol Hum Reprod 21:369–381. https://doi.org/10.1093/molehr/gav001 LiL YangJ JiangY 2015 Activation of decidual invariant natural killer T cells promotes lipopolysaccharide-induced preterm birth Mol Hum Reprod 21 369 381 https://doi.org/10.1093/molehr/gav001Search in Google Scholar

Li M, Wu ZM, Yang H et al (2011) NFκB and JNK/MAPK activation mediates the production of major macrophage-or dendritic cell-recruiting chemokine in human first trimester decidual cells in response to proinflammatory stimuli. J Clin Endocrinol Metab 96:2502–2511. https://doi.org/10.1210%2Fjc.2011-0055 LiM WuZM YangH 2011 NFκB and JNK/MAPK activation mediates the production of major macrophage-or dendritic cell-recruiting chemokine in human first trimester decidual cells in response to proinflammatory stimuli J Clin Endocrinol Metab 96 2502 2511 https://doi.org/10.1210%2Fjc.2011-0055Search in Google Scholar

Li Y, Lopez GE, Vazquez J et al (2018) Decidual-placental immune landscape during syngeneic murine pregnancy. Front Immunol 9:2087. https://doi.org/10.3389%2Ffimmu.2018.02087 LiY LopezGE VazquezJ 2018 Decidual-placental immune landscape during syngeneic murine pregnancy Front Immunol 9 2087 https://doi.org/10.3389%2Ffimmu.2018.02087Search in Google Scholar

Liang J, Sun L, Wang Q et al (2006) Progesterone regulates mouse dendritic cells differentiation and maturation. Int Immunopharmacol 6:830–838. https://doi.org/10.1016/j.vetimm.2016.09.007 LiangJ SunL WangQ 2006 Progesterone regulates mouse dendritic cells differentiation and maturation Int Immunopharmacol 6 830 838 https://doi.org/10.1016/j.vetimm.2016.09.007Search in Google Scholar

Liao R, Sun J, Zhang L et al (2008) MicroRNAs play a role in the development of human hematopoietic stem cells. J Cell Biochem 104:805–817. https://doi.org/10.1002/jcb.21668 LiaoR SunJ ZhangL 2008 MicroRNAs play a role in the development of human hematopoietic stem cells J Cell Biochem 104 805 817 https://doi.org/10.1002/jcb.21668Search in Google Scholar

Liu HY, Buenafe AC, Matejuk A et al (2002) Estrogen inhibition of EAE involves effects on dendritic cell function. J Neurosci Res 70:238–248. https://doi.org/10.1002/jnr.10409 LiuHY BuenafeAC MatejukA 2002 Estrogen inhibition of EAE involves effects on dendritic cell function J Neurosci Res 70 238 248 https://doi.org/10.1002/jnr.10409Search in Google Scholar

Liu K, Victora GD, Schwickert TA et al (2009) In vivo analysis of dendritic cell development and homeostasis. Science 324:392–397. https://doi.org/10.1126/science.1170540 LiuK VictoraGD SchwickertTA 2009 In vivo analysis of dendritic cell development and homeostasis Science 324 392 397 https://doi.org/10.1126/science.1170540Search in Google Scholar

Liu S, Wei H, Li Y et al (2018) Downregulation of ILT 4+ dendritic cells in recurrent miscarriage and recurrent implantation failure. Am J Reprod Immunol 80:e12998. https://doi.org/10.1111/aji.12998 LiuS WeiH LiY 2018 Downregulation of ILT 4+ dendritic cells in recurrent miscarriage and recurrent implantation failure Am J Reprod Immunol 80 e12998 https://doi.org/10.1111/aji.12998Search in Google Scholar

Liu TT, Kim S, Desai P et al (2022) Ablation of cDC2 development by triple mutations within the Zeb2 enhancer. Nature 607:142–148. https://doi.org/10.1038/s41586-022-04866-z LiuTT KimS DesaiP 2022 Ablation of cDC2 development by triple mutations within the Zeb2 enhancer Nature 607 142 148 https://doi.org/10.1038/s41586-022-04866-zSearch in Google Scholar

Liu YJ (2001) Dendritic cell subsets and lineages, and their functions in innate and adaptive immunity. Cell 106:259–262. https://doi.org/10.1016/s0092-8674(01)00456-1 LiuYJ 2001 Dendritic cell subsets and lineages, and their functions in innate and adaptive immunity Cell 106 259 262 https://doi.org/10.1016/s0092-8674(01)00456-1Search in Google Scholar

Liu Z, Wang H, Li Z et al (2023) Dendritic cell type 3 arises from Ly6C+ monocyte-dendritic cell progenitors. Immunity 56:1761–1777.e6. https://doi.org/10.1016/j.immuni.2023.07.001 LiuZ WangH LiZ 2023 Dendritic cell type 3 arises from Ly6C+ monocyte-dendritic cell progenitors Immunity 56 1761 1777.e6 https://doi.org/10.1016/j.immuni.2023.07.001Search in Google Scholar

Lu C, Huang X, Zhang X et al (2011) miR-221 and miR-155 regulate human dendritic cell development, apoptosis, and IL-12 production through targeting of p27kip1, KPC1, and SOCS-1. Blood 117:4293–4303. https://doi.org/10.1182/blood-2010-12-322503 LuC HuangX ZhangX 2011 miR-221 and miR-155 regulate human dendritic cell development, apoptosis, and IL-12 production through targeting of p27kip1, KPC1, and SOCS-1 Blood 117 4293 4303 https://doi.org/10.1182/blood-2010-12-322503Search in Google Scholar

Lu HQ, Hu R (2019) The role of immunity in the pathogenesis and development of pre-eclampsia. Scan J Immunol 90:e12756. https://doi.org/10.1111/sji.12756 LuHQ HuR 2019 The role of immunity in the pathogenesis and development of pre-eclampsia Scan J Immunol 90 e12756https://doi.org/10.1111/sji.12756Search in Google Scholar

Lutz MB, Schuler G (2002) Immature, semi-mature and fully mature dendritic cells: Which signals induce tolerance or immunity? Trends Immunol 23:445–449. https://doi.org/10.1016/s1471-4906(02)02281-0 LutzMB SchulerG 2002 Immature, semi-mature and fully mature dendritic cells: Which signals induce tolerance or immunity? Trends Immunol 23 445 449 https://doi.org/10.1016/s1471-4906(02)02281-0Search in Google Scholar

Magatti M, De Munari S, Vertua E et al (2009) Amniotic mesenchymal tissue cells inhibit dendritic cell differentiation of peripheral blood and amnion resident monocytes. Cell Transplant 18:899–914. https://doi.org/10.3727/096368909x471314 MagattiM De MunariS VertuaE 2009 Amniotic mesenchymal tissue cells inhibit dendritic cell differentiation of peripheral blood and amnion resident monocytes Cell Transplant 18 899 914 https://doi.org/10.3727/096368909x471314Search in Google Scholar

Mahnke K, Knop J, Enk AH (2003) Induction of tolerogenic DCs: ‘you are what you eat’. Trends Immunol 24:646–651. https://doi.org/10.1016/j.it.2003.09.012 MahnkeK KnopJ EnkAH 2003 Induction of tolerogenic DCs: ‘you are what you eat’ Trends Immunol 24 646 651 https://doi.org/10.1016/j.it.2003.09.012Search in Google Scholar

Mantovani A, Sica A, Sozzani S et al (2004) The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol 25:677–686. https://doi.org/10.1016/j.it.2004.09.015 MantovaniA SicaA SozzaniS 2004 The chemokine system in diverse forms of macrophage activation and polarization Trends Immunol 25 677 686 https://doi.org/10.1016/j.it.2004.09.015Search in Google Scholar

Martinez FO, Sica A, Mantovani A et al (2008) Macrophage activation and polarization. Front Biosci 13:453–461. https://doi.org/10.2741/2692 MartinezFO SicaA MantovaniA 2008 Macrophage activation and polarization Front Biosci 13 453 461 https://doi.org/10.2741/2692Search in Google Scholar

Martinez-Nunez RT, Louafi F, Friedmann PS et al (2009) MicroRNA-155 modulates the pathogen binding ability of dendritic cells (DCs) by down-regulation of DC-specific intercellular adhesion molecule-3 grabbing non-integrin (DC-SIGN). J Biol Chem 284:16334–16342. https://doi.org/10.1074/jbc.M109.011601 Martinez-NunezRT LouafiF FriedmannPS 2009 MicroRNA-155 modulates the pathogen binding ability of dendritic cells (DCs) by down-regulation of DC-specific intercellular adhesion molecule-3 grabbing non-integrin (DC-SIGN) J Biol Chem 284 16334 16342 https://doi.org/10.1074/jbc.M109.011601Search in Google Scholar

Marzaioli V, Canavan M, Floudas A et al (2020) Monocyte-derived dendritic cell differentiation in inflammatory arthritis is regulated by the JAK/STAT axis via NADPH oxidase regulation. Front Immunol 11:1406. https://doi.org/10.3389/fimmu.2020.01406 MarzaioliV CanavanM FloudasA 2020 Monocyte-derived dendritic cell differentiation in inflammatory arthritis is regulated by the JAK/STAT axis via NADPH oxidase regulation Front Immunol 11 1406https://doi.org/10.3389/fimmu.2020.01406Search in Google Scholar

McGovern N, Shin A, Low G et al (2017) Human fetal dendritic cells promote prenatal T-cell immune suppression through arginase-2. Nature 546:662–666. https://doi.org/10.1038/nature22795 McGovernN ShinA LowG 2017 Human fetal dendritic cells promote prenatal T-cell immune suppression through arginase-2 Nature 546 662 666 https://doi.org/10.1038/nature22795Search in Google Scholar

McKenna HJ, Stocking KL, Miller RE et al (2000) Mice lacking flt3 ligand have deficient hematopoiesis affecting hematopoietic progenitor cells, dendritic cells, and natural killer cells. Blood 95:3489–3497. https://doi.org/10.1182/blood.V95.11.3489 McKennaHJ StockingKL MillerRE 2000 Mice lacking flt3 ligand have deficient hematopoiesis affecting hematopoietic progenitor cells, dendritic cells, and natural killer cells Blood 95 3489 3497 https://doi.org/10.1182/blood.V95.11.3489Search in Google Scholar

Menon R (2016) Spontaneous preterm birth, a clinical dilemma: Etiologic, pathophysiologic and genetic heterogeneities and racial disparity. Acta Obstet Gynecol Scand 95:590–605. https://doi.org/10.1080/00016340802005126 MenonR 2016 Spontaneous preterm birth, a clinical dilemma: Etiologic, pathophysiologic and genetic heterogeneities and racial disparity Acta Obstet Gynecol Scand 95 590 605 https://doi.org/10.1080/00016340802005126Search in Google Scholar

Merad M, Manz MG. (2009) Dendritic cell homeostasis. Blood 113:3418–3427. https://doi.org/10.1182/blood-2008-12-180646 MeradM ManzMG. 2009 Dendritic cell homeostasis Blood 113 3418 3427 https://doi.org/10.1182/blood-2008-12-180646Search in Google Scholar

Merad M, Sathe P, Helft J et al (2013) The dendritic cell lineage: Ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting. Annu Rev Immunol 31:563–604. https://doi.org/10.1146/annurev-immunol-020711-074950 MeradM SatheP HelftJ 2013 The dendritic cell lineage: Ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting Annu Rev Immunol 31 563 604 https://doi.org/10.1146/annurev-immunol-020711-074950Search in Google Scholar

Mildner A, Chapnik E, Manor O et al (2013a) Mononuclear phagocyte miRNome analysis identifies miR-142 as critical regulator of murine dendritic cell homeostasis. Blood 121:1016–1027. https://doi.org/10.1182/blood-2012-07-445999 MildnerA ChapnikE ManorO 2013a Mononuclear phagocyte miRNome analysis identifies miR-142 as critical regulator of murine dendritic cell homeostasis Blood 121 1016 1027 https://doi.org/10.1182/blood-2012-07-445999Search in Google Scholar

Mildner A, Jung S (2014) Development and function of dendritic cell subsets. Immunity 40:642–656. https://doi.org/10.1016/j.immuni.2014.04.016 MildnerA JungS 2014 Development and function of dendritic cell subsets Immunity 40 642 656 https://doi.org/10.1016/j.immuni.2014.04.016Search in Google Scholar

Mildner A, Yona S, Jung S (2013b) A close encounter of the third kind: Monocyte-derived cells. Adv Immunol 120:69–103. https://doi.org/10.1016/b978-0-12-417028-5.00003-x MildnerA YonaS JungS 2013b A close encounter of the third kind: Monocyte-derived cells Adv Immunol 120 69 103 https://doi.org/10.1016/b978-0-12-417028-5.00003-xSearch in Google Scholar

Mills CD, Kincaid K, Alt JM et al (2000) M-1/M-2 macrophages and the Th1/Th2 paradigm. J Immunol 164:6166–6173. https://doi.org/10.4049/jimmunol.164.12.6166 MillsCD KincaidK AltJM 2000 M-1/M-2 macrophages and the Th1/Th2 paradigm J Immunol 164 6166 6173 https://doi.org/10.4049/jimmunol.164.12.6166Search in Google Scholar

Mills PJ (2001) Peripheral leukocyte subpopulations and catecholamine levels in astronauts as a function of mission duration. Psychosom Med 63:886–90. https://doi.org/10.1097/00006842-200111000-00006 MillsPJ 2001 Peripheral leukocyte subpopulations and catecholamine levels in astronauts as a function of mission duration Psychosom Med 63 886 90 https://doi.org/10.1097/00006842-200111000-00006Search in Google Scholar

Mincheva-Nilsson L, Nagaeva O, Chen T et al (2006) Placenta-derived soluble MHC class I chain-related molecules down-regulate NKG2D receptor on peripheral blood mononuclear cells during human pregnancy: A possible novel immune escape mechanism for fetal survival. J Immunol 176:3585–3592. https://doi.org/10.4049/jimmunol.176.6.3585 Mincheva-NilssonL NagaevaO ChenT 2006 Placenta-derived soluble MHC class I chain-related molecules down-regulate NKG2D receptor on peripheral blood mononuclear cells during human pregnancy: A possible novel immune escape mechanism for fetal survival J Immunol 176 3585 3592 https://doi.org/10.4049/jimmunol.176.6.3585Search in Google Scholar

Miranda S, Litwin S, Barrientos G et al (2006) Dendritic cells therapy confers a protective microenvironment in murine pregnancy. Scand J Immunol 64:493–499. https://doi.org/10.1111/j.1365-3083.2006.01841.x MirandaS LitwinS BarrientosG 2006 Dendritic cells therapy confers a protective microenvironment in murine pregnancy Scand J Immunol 64 493 499 https://doi.org/10.1111/j.1365-3083.2006.01841.xSearch in Google Scholar

Miyazaki S, Tsuda H, Sakai M et al (2003) Predominance of Th2-promoting dendritic cells in early human pregnancy decidua. J Leukoc Biol 74:514–522. https://doi.org/10.1189/jlb.1102566 MiyazakiS TsudaH SakaiM 2003 Predominance of Th2-promoting dendritic cells in early human pregnancy decidua J Leukoc Biol 74 514 522 https://doi.org/10.1189/jlb.1102566Search in Google Scholar

Mol BWJ, Roberts CT, Thangaratinam S et al (2016) Preeclampsia. Lancet 387:999–1011. https://doi.org/10.1016/S0140-6736(15)00070-7 MolBWJ RobertsCT ThangaratinamS 2016 Preeclampsia Lancet 387 999 1011 https://doi.org/10.1016/S0140-6736(15)00070-7Search in Google Scholar

Morelli AE, Di Paola G, Fainboim L (1992) Density and distribution of Langerhans cells in the human uterine cervix. Arch Gynecol Obstet 252:65–71. https://doi.org/10.1007/bf02389630 MorelliAE Di PaolaG FainboimL 1992 Density and distribution of Langerhans cells in the human uterine cervix Arch Gynecol Obstet 252 65 71 https://doi.org/10.1007/bf02389630Search in Google Scholar

Moser M (2003) Dendritic cells in immunity and tolerance—do they display opposite functions? Immunity 19:5–8. https://doi.org/10.1016/s1074-7613(03)00182-1 MoserM 2003 Dendritic cells in immunity and tolerance—do they display opposite functions? Immunity 19 5 8 https://doi.org/10.1016/s1074-7613(03)00182-1Search in Google Scholar

Naik SH, Metcalf D, Van Nieuwenhuijze A et al (2006) Intrasplenic steady-state dendritic cell precursors that are distinct from monocytes. Nat Immunol 7:663–671. https://doi.org/10.1038/ni1340 NaikSH MetcalfD Van NieuwenhuijzeA 2006 Intrasplenic steady-state dendritic cell precursors that are distinct from monocytes Nat Immunol 7 663 671 https://doi.org/10.1038/ni1340Search in Google Scholar

Naik SH, Sathe P, Park HY et al (2007) Development of plasmacytoid and conventional dendritic cell subtypes from single precursor cells derived in vitro and in vivo. Nat Immunol 8:1217–1226. https://doi.org/10.1038/ni1522 NaikSH SatheP ParkHY 2007 Development of plasmacytoid and conventional dendritic cell subtypes from single precursor cells derived in vitro and in vivo Nat Immunol 8 1217 1226 https://doi.org/10.1038/ni1522Search in Google Scholar

Negishi Y, Shima Y, Takeshita T et al (2017) Distribution of invariant natural killer T cells and dendritic cells in late pre-term birth without acute chorioamnionitis. Am J Reprod Immunol 77:e12658. https://doi.org/10.1111/aji.12658 NegishiY ShimaY TakeshitaT 2017 Distribution of invariant natural killer T cells and dendritic cells in late pre-term birth without acute chorioamnionitis Am J Reprod Immunol 77 e12658 https://doi.org/10.1111/aji.12658Search in Google Scholar

Negishi Y, Wakabayashi A, Shimizu M et al (2012) Disruption of maternal immune balance maintained by innate DC subsets results in spontaneous pregnancy loss in mice. Immunobiology 217:951–961. https://doi.org/10.1016/j.imbio.2012.01.011 NegishiY WakabayashiA ShimizuM 2012 Disruption of maternal immune balance maintained by innate DC subsets results in spontaneous pregnancy loss in mice Immunobiology 217 951 961 https://doi.org/10.1016/j.imbio.2012.01.011Search in Google Scholar

O’doherty U, Peng M, Gezelter S et al (1994) Human blood contains two subsets of dendritic cells, one immunologically mature and the other immature. Immunology 82:487–493 O’dohertyU PengM GezelterS 1994 Human blood contains two subsets of dendritic cells, one immunologically mature and the other immature Immunology 82 487 493Search in Google Scholar

O’Keeffe M, Fancke B, Hochrein H (2010) The generation of plasmacytoid and conventional dendritic cells with M-CSF. Methods Mol Biol 595:187–193. https://doi.org/10.1007/978-1-60761-421-0_12 O’KeeffeM FanckeB HochreinH 2010 The generation of plasmacytoid and conventional dendritic cells with M-CSF Methods Mol Biol 595 187 193 https://doi.org/10.1007/978-1-60761-421-0_12Search in Google Scholar

Onai N, Obata-Onai A, Schmid MA et al (2007) Identification of clonogenic common Flt3+ M-CSFR+ plasmacytoid and conventional dendritic cell progenitors in mouse bone marrow. Nat Immunol 8:1207–1216. https://doi.org/10.1038/ni1518 OnaiN Obata-OnaiA SchmidMA 2007 Identification of clonogenic common Flt3+ M-CSFR+ plasmacytoid and conventional dendritic cell progenitors in mouse bone marrow Nat Immunol 8 1207 1216 https://doi.org/10.1038/ni1518Search in Google Scholar

Ooi AG, Sahoo D, Adorno M et al (2010) MicroRNA-125b expands hematopoietic stem cells and enriches for the lymphoid-balanced and lymphoid-biased subsets. Proc Natl Acad Sci U S A 105:21505–21510. https://doi.org/10.1073/pnas.1016218107 OoiAG SahooD AdornoM 2010 MicroRNA-125b expands hematopoietic stem cells and enriches for the lymphoid-balanced and lymphoid-biased subsets Proc Natl Acad Sci U S A 105 21505 21510 https://doi.org/10.1073/pnas.1016218107Search in Google Scholar

Pakalniškytė D, Schraml BU (2017) Tissue-specific diversity and functions of conventional dendritic cells. Adv Immunol 134:89–135. https://doi.org/10.1016/bs.ai.2017.01.003 PakalniškytėD SchramlBU 2017 Tissue-specific diversity and functions of conventional dendritic cells Adv Immunol 134 89 135 https://doi.org/10.1016/bs.ai.2017.01.003Search in Google Scholar

Peters JH, Xu H, Ostermeier D et al (1993) Signals required for differentiating dendritic cells from human monocytes in vitro. Adv Exp Med Biol 329:275–280. https://doi.org/10.1007/978-1-4615-2930-9_46 PetersJH XuH OstermeierD 1993 Signals required for differentiating dendritic cells from human monocytes in vitro Adv Exp Med Biol 329 275 280 https://doi.org/10.1007/978-1-4615-2930-9_46Search in Google Scholar

Pickford GE, Srivastava AK, Slicher AM et al (1971) The stress response in the abundance of circulating leukocytes in the killifish, Fundulus heteroclitus. I The cold-shock sequence and the effects of hypophysectomy. J Exp Zool 177:89–96. https://doi.org/10.1002/jez.1401770110 PickfordGE SrivastavaAK SlicherAM 1971 The stress response in the abundance of circulating leukocytes in the killifish, Fundulus heteroclitus. I The cold-shock sequence and the effects of hypophysectomy J Exp Zool 177 89 96 https://doi.org/10.1002/jez.1401770110Search in Google Scholar

Plaks V, Birnberg T, Berkutzki T et al (2008) Uterine DCs are crucial for decidua formation during embryo implantation in mice. J Clin Invest 118:3954–3965. https://doi.org/10.1172%2FJCI36682 PlaksV BirnbergT BerkutzkiT 2008 Uterine DCs are crucial for decidua formation during embryo implantation in mice J Clin Invest 118 3954 3965 https://doi.org/10.1172%2FJCI36682Search in Google Scholar

Poltorak MP, Schraml BU (2015) Fate mapping of dendritic cells. Front Immunol 6:199. https://doi.org/10.3389/fimmu.2015.00199 PoltorakMP SchramlBU 2015 Fate mapping of dendritic cells Front Immunol 6 199 https://doi.org/10.3389/fimmu.2015.00199Search in Google Scholar

Pomeroy B, Klaessig S, Schukken Y (2016) Impact of in vitro treatments of physiological levels of estradiol and progesterone observed in pregnancy on bovine monocyte-derived dendritic cell differentiation and maturation. Vet Immunol Immunopathol 182:37–42. https://doi.org/10.1016/j.vetimm.2016.09.007 PomeroyB KlaessigS SchukkenY 2016 Impact of in vitro treatments of physiological levels of estradiol and progesterone observed in pregnancy on bovine monocyte-derived dendritic cell differentiation and maturation Vet Immunol Immunopathol 182 37 42 https://doi.org/10.1016/j.vetimm.2016.09.007Search in Google Scholar

Puts JJ, Moesker O, De Waal RM et al (1986) Immunohistochemical identification of Langerhans cells in normal epithelium and in epithelial lesions of the uterine cervix. Int J Gynecol Pathol 5:151–162. https://doi.org/10.1016/0090-8258(89)90511-8 PutsJJ MoeskerO De WaalRM 1986 Immunohistochemical identification of Langerhans cells in normal epithelium and in epithelial lesions of the uterine cervix Int J Gynecol Pathol 5 151 162 https://doi.org/10.1016/0090-8258(89)90511-8Search in Google Scholar

Qian ZD, Huang LL, Zhu XM (2015) An immunohistochemical study of CD83-and CD1a-positive dendritic cells in the decidua of women with recurrent spontaneous abortion. Eur J Med Res 20:1–7. http://dx.doi.org/10.1186/s40001-014-0076-2 QianZD HuangLL ZhuXM 2015 An immunohistochemical study of CD83-and CD1a-positive dendritic cells in the decidua of women with recurrent spontaneous abortion Eur J Med Res 20 1 7 http://dx.doi.org/10.1186/s40001-014-0076-2Search in Google Scholar

Redline RW, Boyd TK, Roberts DJ (2018) Placental and gestational pathology. Cambridge University Press, Cambridge, UK. RedlineRW BoydTK RobertsDJ 2018 Placental and gestational pathology Cambridge University Press Cambridge, UKSearch in Google Scholar

Redwine L (2003) Acute psychological stress: Effects on chemotaxis and cellular adhesion molecule expression. Psychosom Med 65:598–603. https://doi.org/10.1097/01.psy.0000079377.86193.a8 RedwineL 2003 Acute psychological stress: Effects on chemotaxis and cellular adhesion molecule expression Psychosom Med 65 598 603 https://doi.org/10.1097/01.psy.0000079377.86193.a8Search in Google Scholar

Redwine L (2004) Differential immune cell chemotaxis responses to acute psychological stress in Alzheimer caregivers compared to non-caregiver controls. Psychosom Med 66:770–775. https://doi.org/10.1097/01.psy.0000138118.62018.87 RedwineL 2004 Differential immune cell chemotaxis responses to acute psychological stress in Alzheimer caregivers compared to non-caregiver controls Psychosom Med 66 770 775 https://doi.org/10.1097/01.psy.0000138118.62018.87Search in Google Scholar

Reizis B (2010) Regulation of plasmacytoid dendritic cell development. Curr Opin Immunol 22:206–211. https://doi.org/10.1016%2Fj.coi.2010.01.005 ReizisB 2010 Regulation of plasmacytoid dendritic cell development Curr Opin Immunol 22 206 211 https://doi.org/10.1016%2Fj.coi.2010.01.005Search in Google Scholar

Reizis B (2019) Plasmacytoid dendritic cells: Development, regulation, and function. Immunity 50:37–50. https://doi.org/10.1016/j.immuni.2018.12.027 ReizisB 2019 Plasmacytoid dendritic cells: Development, regulation, and function Immunity 50 37 50 https://doi.org/10.1016/j.immuni.2018.12.027Search in Google Scholar

Reizis B, Bunin A, Ghosh HS et al (2011) Plasmacytoid dendritic cells: Recent progress and open questions. Annu Rev Immunol 29:163–183. https://doi.org/10.1146/annurev-immunol-031210-101345 ReizisB BuninA GhoshHS 2011 Plasmacytoid dendritic cells: Recent progress and open questions Annu Rev Immunol 29 163 183 https://doi.org/10.1146/annurev-immunol-031210-101345Search in Google Scholar

Rinder CS (1997) Lymphocyte and monocyte subset changes during cardiopulmonary bypass: Effects of aging and gender. J Lab Clin Med 129:592–602. https://doi.org/10.1016/s0022-2143(97)90193-1 RinderCS 1997 Lymphocyte and monocyte subset changes during cardiopulmonary bypass: Effects of aging and gender J Lab Clin Med 129 592 602 https://doi.org/10.1016/s0022-2143(97)90193-1Search in Google Scholar

Romero R, Mazor M, Munoz H (1994) The preterm labor syndrome. Ann N Y Acad Sci 734:414–429. https://doi.org/10.1111/j.1749-6632.1994.tb21771.x RomeroR MazorM MunozH 1994 The preterm labor syndrome Ann N Y Acad Sci 734 414 429 https://doi.org/10.1111/j.1749-6632.1994.tb21771.xSearch in Google Scholar

Ruiz RJ, Jallo N, Murphey C et al (2012) Second trimester maternal plasma levels of cytokines IL-1Ra, IL-6 and IL-10 and pre-term birth. J Perinatol 32:483–490. https://doi.org/10.1038/jp.2011.193 RuizRJ JalloN MurpheyC 2012 Second trimester maternal plasma levels of cytokines IL-1Ra, IL-6 and IL-10 and pre-term birth J Perinatol 32 483 490 https://doi.org/10.1038/jp.2011.193Search in Google Scholar

Rukavina D, Rubeša G, Gudelj L et al (1995) Characteristics of perforin expressing lymphocytes within the first trimester decidua of human pregnancy. Am J Reprod Immunol 33:394–404. https://doi.org/10.1111/j.1600-0897.1995.tb00908.x RukavinaD RubešaG GudeljL 1995 Characteristics of perforin expressing lymphocytes within the first trimester decidua of human pregnancy Am J Reprod Immunol 33 394 404 https://doi.org/10.1111/j.1600-0897.1995.tb00908.xSearch in Google Scholar

Saito S, Nakashima A, Shima T et al (2010) Th1/Th2/Th17 and regulatory T-cell paradigm in pregnancy. Am J Reprod Immunol 63:601–610. https://doi.org/10.1111/j.1600-0897.2010.00852.x SaitoS NakashimaA ShimaT 2010 Th1/Th2/Th17 and regulatory T-cell paradigm in pregnancy Am J Reprod Immunol 63 601 610 https://doi.org/10.1111/j.1600-0897.2010.00852.xSearch in Google Scholar

Sakaguchi S, Sakaguchi N, Asano M et al (1995) Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 155:1151–1164. SakaguchiS SakaguchiN AsanoM 1995 Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases J Immunol 155 1151 1164Search in Google Scholar

Salamone G, Fraccaroli L, Gori S et al (2012) Trophoblast cells induce a tolerogenic profile in dendritic cells. Hum Reprod 27:2598–2606. https://doi.org/10.1093/humrep/des208 SalamoneG FraccaroliL GoriS 2012 Trophoblast cells induce a tolerogenic profile in dendritic cells Hum Reprod 27 2598 2606 https://doi.org/10.1093/humrep/des208Search in Google Scholar

Sauss K, Ehrentraut S, Zenclussen AC et al (2018) The pregnancy hormone human chorionic gonadotropin differentially regulates plasmacytoid and myeloid blood dendritic cell subsets. Am J Reprod Immunol 79:e12837. https://doi.org/10.1111/aji.12837 SaussK EhrentrautS ZenclussenAC 2018 The pregnancy hormone human chorionic gonadotropin differentially regulates plasmacytoid and myeloid blood dendritic cell subsets Am J Reprod Immunol 79 e12837 https://doi.org/10.1111/aji.12837Search in Google Scholar

Savage PA, Klawon DEJ, Miller CH (2020) Regulatory T cell development. Annu Rev Immunol 38:421–453. https://doi.org/10.1146/annurev-immunol-100219-020937 SavagePA KlawonDEJ MillerCH 2020 Regulatory T cell development Annu Rev Immunol 38 421 453 https://doi.org/10.1146/annurev-immunol-100219-020937Search in Google Scholar

Savage PA, Malchow S, Leventhal DS (2013) Basic principles of tumor-associated regulatory T cell biology. Trends Immunol 34:33–40. https://doi.org/10.1016/j.it.2012.08.005 SavagePA MalchowS LeventhalDS 2013 Basic principles of tumor-associated regulatory T cell biology Trends Immunol 34 33 40 https://doi.org/10.1016/j.it.2012.08.005Search in Google Scholar

Schroder K, Hertzog PJ, Ravasi T et al (2004) Interferon-gamma: An overview of signals, mechanisms and functions. J Leukoc Biol 75:163–189. https://doi.org/10.1189/jlb.0603252 SchroderK HertzogPJ RavasiT 2004 Interferon-gamma: An overview of signals, mechanisms and functions J Leukoc Biol 75 163 189 https://doi.org/10.1189/jlb.0603252Search in Google Scholar

Schumacher A (2017) Human chorionic gonadotropin as a pivotal endocrine immune regulator initiating and preserving fetal tolerance. Int J Mol Sci 18:2166. https://doi.org/10.3390/ijms18102166 SchumacherA 2017 Human chorionic gonadotropin as a pivotal endocrine immune regulator initiating and preserving fetal tolerance Int J Mol Sci 18 2166https://doi.org/10.3390/ijms18102166Search in Google Scholar

Schumacher A, Dauven D, Zenclussen AC (2017) Progesterone-driven local regulatory T cell induction does not prevent fetal loss in the CBA/J× DBA/2J abortion-prone model. Am J Reprod Immunol 77:e12626. https://doi.org/10.1111/aji.12626 SchumacherA DauvenD ZenclussenAC 2017 Progesterone-driven local regulatory T cell induction does not prevent fetal loss in the CBA/J× DBA/2J abortion-prone model Am J Reprod Immunol 77 e12626 https://doi.org/10.1111/aji.12626Search in Google Scholar

Segerer SE, Staib C, Kaemmerer U et al (2012) Dendritic cells: Elegant arbiters in human reproduction. Curr Pharm Biotechnol 13:1378–1384. https://doi.org/10.2174/138920112800784916 SegererSE StaibC KaemmererU 2012 Dendritic cells: Elegant arbiters in human reproduction Curr Pharm Biotechnol 13 1378 1384 https://doi.org/10.2174/138920112800784916Search in Google Scholar

Segura E, Amigorena S (2013) Inflammatory dendritic cells in mice and humans. Trends Immunol 34:440–445. https://doi.org/10.1016/j.it.2013.06.001 SeguraE AmigorenaS 2013 Inflammatory dendritic cells in mice and humans Trends Immunol 34 440 445 https://doi.org/10.1016/j.it.2013.06.001Search in Google Scholar

Shah NM, Herasimtschuk AA, Boasso A et al (2017) Changes in T cell and dendritic cell phenotype from mid to late pregnancy are indicative of a shift from immune tolerance to immune activation. Front Immunol 8:1138. https://doi.org/10.3389/fimmu.2017.01138 ShahNM HerasimtschukAA BoassoA 2017 Changes in T cell and dendritic cell phenotype from mid to late pregnancy are indicative of a shift from immune tolerance to immune activation Front Immunol 8 1138 https://doi.org/10.3389/fimmu.2017.01138Search in Google Scholar

Shao Q, Liu X, Huang Y et al (2020) Human decidual stromal cells in early pregnancy induce functional re-programming of monocyte-derived dendritic cells via crosstalk between G-CSF and IL-1β. Front Immunol 11:574270. https://doi.org/10.3389/fimmu.2020.574270 ShaoQ LiuX HuangY 2020 Human decidual stromal cells in early pregnancy induce functional re-programming of monocyte-derived dendritic cells via crosstalk between G-CSF and IL-1β Front Immunol 11 574270 https://doi.org/10.3389/fimmu.2020.574270Search in Google Scholar

Shen GM, Zhou MQ, Xu GS et al (2006) Role of vasoactive intestinal peptide and nitric oxide in the modulation of electroacupucture on gastric motility in stressed rats. World J Gastroenterol 12: 6156–6160. https://doi.org/10.3748%2Fwjg.v12.i38.6156 ShenGM ZhouMQ XuGS 2006 Role of vasoactive intestinal peptide and nitric oxide in the modulation of electroacupucture on gastric motility in stressed rats World J Gastroenterol 12 6156 6160 https://doi.org/10.3748%2Fwjg.v12.i38.6156Search in Google Scholar

Shin S, Jang JY, Roh EY et al (2009) Differences in circulating dendritic cell subtypes in pregnant women, cord blood and healthy adult women. J Korean Med Sci 24:853–859. https://doi.org/10.3346/jkms.2009.24.5.853 ShinS JangJY RohEY 2009 Differences in circulating dendritic cell subtypes in pregnant women, cord blood and healthy adult women J Korean Med Sci 24 853 859 https://doi.org/10.3346/jkms.2009.24.5.853Search in Google Scholar

Shortman K, Naik SH (2007) Steady-state and inflammatory dendritic-cell development. Nat Rev Immunol 7:19–30. https://doi.org/10.1038/nri1996 ShortmanK NaikSH 2007 Steady-state and inflammatory dendritic-cell development Nat Rev Immunol 7 19 30 https://doi.org/10.1038/nri1996Search in Google Scholar

Shortman K, Sathe P, Vremec D et al (2013) Plasmacytoid dendritic cell development. Adv Immunol 120:105–126. https://doi.org/10.1016/B978-0-12-417028-5.00004-1 ShortmanK SatheP VremecD 2013 Plasmacytoid dendritic cell development Adv Immunol 120 105 126 https://doi.org/10.1016/B978-0-12-417028-5.00004-1Search in Google Scholar

Smits HH, de Jong EC, Wierenga EA (2005) Different faces of regulatory DCs in homeostasis and immunity. Trends Immunol 26:123–129. https://doi.org/10.1016/j.it.2005.01.002 SmitsHH de JongEC WierengaEA 2005 Different faces of regulatory DCs in homeostasis and immunity Trends Immunol 26 123 129 https://doi.org/10.1016/j.it.2005.01.002Search in Google Scholar

Spong CY, Lee SJ, McCune SK et al (1999) Regulation of postim-plantation mouse embryonic growth by maternal vasoactive intestinal peptide. Ann NY Acad Sci 897:101–108. https://doi.org/10.1111/j.1749-6632.1999.tb07882.x SpongCY LeeSJ McCuneSK 1999 Regulation of postim-plantation mouse embryonic growth by maternal vasoactive intestinal peptide Ann NY Acad Sci 897 101 108 https://doi.org/10.1111/j.1749-6632.1999.tb07882.xSearch in Google Scholar

Steinman RM, Cohn ZA (1973) Identification of a novel cell type in peripheral lymphoid organs of mice: I. Morphology, quantitation, tissue distribution. J Exp Med 137:1142–1162. https://doi.org/10.1084/jem.137.5.1142 SteinmanRM CohnZA 1973 Identification of a novel cell type in peripheral lymphoid organs of mice: I. Morphology, quantitation, tissue distribution J Exp Med 137 1142 1162 https://doi.org/10.1084/jem.137.5.1142Search in Google Scholar

Steinman RM, Cohn ZA (1974) Identification of a novel cell type in peripheral lymphoid organs of mice: II. Functional properties in vitro. J Exp Med 139:380–397. https://doi.org/10.1084/jem.139.2.380 SteinmanRM CohnZA 1974 Identification of a novel cell type in peripheral lymphoid organs of mice: II. Functional properties in vitro J Exp Med 139 380 397 https://doi.org/10.1084/jem.139.2.380Search in Google Scholar

Steinman RM, Hawiger D, Nussenzweig MC (2003) Tolerogenic dendritic cells. Annu Rev Immunol 21:685–711. https://doi.org/10.1146/annurev.immunol.21.120601.141040 SteinmanRM HawigerD NussenzweigMC 2003 Tolerogenic dendritic cells Annu Rev Immunol 21 685 711 https://doi.org/10.1146/annurev.immunol.21.120601.141040Search in Google Scholar

Steinman RM, Lustig DS, Cohn ZA (1974) Identification of a novel cell type in peripheral lymphoid organs of mice: III. Functional properties in vivo. J Exp Med 139:1431–1445. https://doi.org/10.1084/jem.139.6.1431 SteinmanRM LustigDS CohnZA 1974 Identification of a novel cell type in peripheral lymphoid organs of mice: III. Functional properties in vivo J Exp Med 139 1431 1445 https://doi.org/10.1084/jem.139.6.1431Search in Google Scholar

Su X, Qian C, Zhang Q et al (2013) miRNomes of haematopoietic stem cells and dendritic cells identify miR-30b as a regulator of Notch1. Nat Commun 4:2903. https://doi.org/10.1038/ncomms3903 SuX QianC ZhangQ 2013 miRNomes of haematopoietic stem cells and dendritic cells identify miR-30b as a regulator of Notch1 Nat Commun 4 2903 https://doi.org/10.1038/ncomms3903Search in Google Scholar

Svensson-Arvelund J, Mehta RB, Lindau R et al (2017) The human fetal placenta promotes tolerance against the semiallogeneic fetus by inducing regulatory T cells and homeostatic M2 macrophages. J Immunol 198:3749–3761. https://doi.org/10.4049/jimmunol.1401536 Svensson-ArvelundJ MehtaRB LindauR 2017 The human fetal placenta promotes tolerance against the semiallogeneic fetus by inducing regulatory T cells and homeostatic M2 macrophages J Immunol 198 3749 3761 https://doi.org/10.4049/jimmunol.1401536Search in Google Scholar

Swiecki M, Colonna M (2015) The multifaceted biology of plasma-cytoid dendritic cells. Nat Rev Immunol 15:471–485. https://doi.org/10.1038/nri3865 SwieckiM ColonnaM 2015 The multifaceted biology of plasma-cytoid dendritic cells Nat Rev Immunol 15 471 485 https://doi.org/10.1038/nri3865Search in Google Scholar

Szekeres-Bartho J, Barakonyi A, Polgar B et al (1999) The role of γ/δ T cells in progesterone-mediated immunomodulation during pregnancy: A review. Am J Reprod Immunol 42:44–48. https://doi.org/10.1111/j.1600-0897.1999.tb00464.x Szekeres-BarthoJ BarakonyiA PolgarB 1999 The role of γ/δ T cells in progesterone-mediated immunomodulation during pregnancy: A review Am J Reprod Immunol 42 44 48 https://doi.org/10.1111/j.1600-0897.1999.tb00464.xSearch in Google Scholar

Taglauer ES, Waldorf KMA, Petroff MG (2010) The hidden maternal-fetal interface: Events involving the lymphoid organs in maternal-fetal tolerance. Int J Dev Biol 54:421. https://doi.org/10.1387/ijdb.082800et TaglauerES WaldorfKMA PetroffMG 2010 The hidden maternal-fetal interface: Events involving the lymphoid organs in maternal-fetal tolerance Int J Dev Biol 54 421 https://doi.org/10.1387/ijdb.082800etSearch in Google Scholar

Tagliani E, Erlebacher A (2011) Dendritic cell function at the maternal-fetal interface. Expert Rev Clin Immunol 7:593–602. https://doi.org/10.1586/eci.11.52 TaglianiE ErlebacherA 2011 Dendritic cell function at the maternal-fetal interface Expert Rev Clin Immunol 7 593 602 https://doi.org/10.1586/eci.11.52Search in Google Scholar

Tagliani E, Shi C, Nancy P et al (2011) Coordinate regulation of tissue macrophage and dendritic cell population dynamics by CSF-1. J Exp Med 208:1901–1916. https://doi.org/10.1084/jem.20110866 TaglianiE ShiC NancyP 2011 Coordinate regulation of tissue macrophage and dendritic cell population dynamics by CSF-1 J Exp Med 208 1901 1916 https://doi.org/10.1084/jem.20110866Search in Google Scholar

Takenaka MC, Quintana FJ (2017) Tolerogenic dendritic cells. Semin Immunopathol 39:113–120. https://doi.org/10.1146/annurev.immunol.21.120601.141040 TakenakaMC QuintanaFJ 2017 Tolerogenic dendritic cells Semin Immunopathol 39 113 120 https://doi.org/10.1146/annurev.immunol.21.120601.141040Search in Google Scholar

Tang-Huau TL, Segura E (2019) Human in vivo-differentiated monocyte-derived dendritic cells. Semin Cell Dev Biol 86:44–49. https://doi.org/10.1016/j.semcdb.2018.02.018 Tang-HuauTL SeguraE 2019 Human in vivo-differentiated monocyte-derived dendritic cells Semin Cell Dev Biol 86 44 49 https://doi.org/10.1016/j.semcdb.2018.02.018Search in Google Scholar

Terness P, Kallikourdis M, Betz AG et al (2007) Tolerance signaling molecules and pregnancy: IDO, galectins, and the renaissance of regulatory T cells. Am J Reprod Immunol 58:238–254. https://doi.org/10.1111/j.1600-0897.2007.00510.x TernessP KallikourdisM BetzAG 2007 Tolerance signaling molecules and pregnancy: IDO, galectins, and the renaissance of regulatory T cells Am J Reprod Immunol 58 238 254 https://doi.org/10.1111/j.1600-0897.2007.00510.xSearch in Google Scholar

Tian Y, Meng L, Zhang Y (2017) Epigenetic regulation of dendritic cell development and function. Cancer J 23:302–307.https://doi.org/10.1097/PPO.0000000000000280 TianY MengL ZhangY 2017 Epigenetic regulation of dendritic cell development and function Cancer J 23 302 307 https://doi.org/10.1097/PPO.0000000000000280Search in Google Scholar

Tirado-González I, Muñoz-Fernández R, Prados A et al (2012) Apoptotic DC-SIGN+ cells in normal human decidua. Placenta 33:257–263. https://doi.org/10.1016/j.placenta.2012.01.003 Tirado-GonzálezI Muñoz-FernándezR PradosA 2012 Apoptotic DC-SIGN+ cells in normal human decidua Placenta 33 257 263 https://doi.org/10.1016/j.placenta.2012.01.003Search in Google Scholar

Vacca P, Cantoni C, Vitale M et al (2010) Crosstalk between decidual NK and CD141 myelomonocytic cells results in induction of Tregs and immunosuppression. Proc Natl Acad Sci U S A 107:11918–11923. https://doi.org/10.1073/pnas.1001749107 VaccaP CantoniC VitaleM 2010 Crosstalk between decidual NK and CD141 myelomonocytic cells results in induction of Tregs and immunosuppression Proc Natl Acad Sci U S A 107 11918 11923 https://doi.org/10.1073/pnas.1001749107Search in Google Scholar

Vremec D, Lieschke GJ, Dunn AR et al (1997) The influence of granulocyte/macrophage colony-stimulating factor on dendritic cell levels in mouse lymphoid organs. Eur J Immunol 27:40–44. https://doi.org/10.1002/eji.1830270107 VremecD LieschkeGJ DunnAR 1997 The influence of granulocyte/macrophage colony-stimulating factor on dendritic cell levels in mouse lymphoid organs Eur J Immunol 27 40 44 https://doi.org/10.1002/eji.1830270107Search in Google Scholar

Wadhwa PD, Culhane JF, Rauh V et al (2001) Stress and pre-term birth: Neuroendocrine, immune/inflammatory, and vascular mechanisms. Matern Child Health J 5:119–125. https://doi.org/10.1023/a:1011353216619 WadhwaPD CulhaneJF RauhV 2001 Stress and pre-term birth: Neuroendocrine, immune/inflammatory, and vascular mechanisms Matern Child Health J 5 119 125 https://doi.org/10.1023/a:1011353216619Search in Google Scholar

Wahid HH, Dorian CL, Chin PY et al (2015) Toll-like receptor 4 is an essential upstream regulator of on-time parturition and perinatal viability in mice. Endocrinology 156:3828–3841. https://doi.org/10.1210/en.2015-1089 WahidHH DorianCL ChinPY 2015 Toll-like receptor 4 is an essential upstream regulator of on-time parturition and perinatal viability in mice Endocrinology 156 3828 3841 https://doi.org/10.1210/en.2015-1089Search in Google Scholar

Wang H, He M, Hou Y et al (2016) Role of decidual CD14+ macrophages in the homeostasis of maternal–fetal interface and the differentiation capacity of the cells during pregnancy and parturition. Placenta 38:76–83. https://doi.org/10.1016/j.placenta.2015.12.001 WangH HeM HouY 2016 Role of decidual CD14+ macrophages in the homeostasis of maternal–fetal interface and the differentiation capacity of the cells during pregnancy and parturition Placenta 38 76 83 https://doi.org/10.1016/j.placenta.2015.12.001Search in Google Scholar

Wang J, Su L, Zhu T et al (2013) Changes in the subsets of dendritic cells and T cells in peripheral blood of patients with preeclampsia. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi 29:72–75 WangJ SuL ZhuT 2013 Changes in the subsets of dendritic cells and T cells in peripheral blood of patients with preeclampsia Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi 29 72 75Search in Google Scholar

Wang J, Tao YM, Cheng XY et al (2014) Dendritic cells derived from preeclampsia patients influence Th1/Th17 cell differentiation in vitro. Int J Clin Exp Med 7:5303–5309 WangJ TaoYM ChengXY 2014 Dendritic cells derived from preeclampsia patients influence Th1/Th17 cell differentiation in vitro Int J Clin Exp Med 7 5303 5309Search in Google Scholar

Waskow C, Liu K, Darrasse-Jèze G et al (2008) The receptor tyro-sine kinase Flt3 is required for dendritic cell development in peripheral lymphoid tissues. Nat Immunol 9:676–683. https://doi.org/10.1038/ni.1615 WaskowC LiuK Darrasse-JèzeG 2008 The receptor tyro-sine kinase Flt3 is required for dendritic cell development in peripheral lymphoid tissues Nat Immunol 9 676 683 https://doi.org/10.1038/ni.1615Search in Google Scholar

Wei R, Lai N, Zhao L et al (2021) Dendritic cells in pregnancy and pregnancy-associated diseases. Biomed Pharmacother 133:110921. https://doi.org/10.1016/j.biopha.2020.110921 WeiR LaiN ZhaoL 2021 Dendritic cells in pregnancy and pregnancy-associated diseases Biomed Pharmacother 133 110921 https://doi.org/10.1016/j.biopha.2020.110921Search in Google Scholar

Wira CR, Roche MA, Rossoll RM (2002) Antigen presentation by vaginal cells: Role of TGFβ as a mediator of estradiol inhibition of antigen presentation. Endocrinology 143:2872–2879. https://doi.org/10.1210/endo.143.8.8938 WiraCR RocheMA RossollRM 2002 Antigen presentation by vaginal cells: Role of TGFβ as a mediator of estradiol inhibition of antigen presentation Endocrinology 143 2872 2879 https://doi.org/10.1210/endo.143.8.8938Search in Google Scholar

Xiong M, Lu J, Zhao A et al (2010) Therapy with FasL-gene–modified dendritic cells confers a protective microenvironment in murine pregnancy. Fertil Steril 93:2767–2769. https://doi.org/10.1016/j.fertnstert.2009.11.040 XiongM LuJ ZhaoA 2010 Therapy with FasL-gene–modified dendritic cells confers a protective microenvironment in murine pregnancy Fertil Steril 93 2767 2769 https://doi.org/10.1016/j.fertnstert.2009.11.040Search in Google Scholar

Xu Y, He H, Li C et al (2011) Immunosuppressive effect of progesterone on dendritic cells in mice. J Reprod Immunol 91:17–23. https://doi.org/10.1016/j.jri.2011.06.101 XuY HeH LiC 2011 Immunosuppressive effect of progesterone on dendritic cells in mice J Reprod Immunol 91 17 23 https://doi.org/10.1016/j.jri.2011.06.101Search in Google Scholar

Yin X, Chen S, Eisenbarth SC (2021) Dendritic cell regulation of T helper cells. Annu Rev Immunol 39:759–790. https://doi.org/10.1146/annurev-immunol-101819-025146 YinX ChenS EisenbarthSC 2021 Dendritic cell regulation of T helper cells Annu Rev Immunol 39 759 790 https://doi.org/10.1146/annurev-immunol-101819-025146Search in Google Scholar

Yoshimura T, Inaba M, Sugiura K et al (2003) Analyses of dendritic cell subsets in pregnancy. Am J Reprod Immunol 50:137–145. https://doi.org/10.1034/j.1600-0897.2003.00063.x YoshimuraT InabaM SugiuraK 2003 Analyses of dendritic cell subsets in pregnancy Am J Reprod Immunol 50 137 145 https://doi.org/10.1034/j.1600-0897.2003.00063.xSearch in Google Scholar

Zarnani AH, Moazzeni SM, Shokri F et al (2007) Kinetics of murine decidual dendritic cells. Reproduction 133:275–283. https://doi.org/10.1530/rep.1.01232 ZarnaniAH MoazzeniSM ShokriF 2007 Kinetics of murine decidual dendritic cells Reproduction 133 275 283 https://doi.org/10.1530/rep.1.01232Search in Google Scholar

Zhou H, Wu L (2017) The development and function of dendritic cell populations and their regulation by miRNAs. Protein Cell 8:501–513. https://doi.org/10.1007/s13238-017-0398-2 ZhouH WuL 2017 The development and function of dendritic cell populations and their regulation by miRNAs Protein Cell 8 501 513 https://doi.org/10.1007/s13238-017-0398-2Search in Google Scholar

Zhu J, Paul WE (2008) CD4 T cells: Fates, functions, and faults. Blood 112:1557–1569. https://doi.org/10.1182/blood-2008-05-078154 ZhuJ PaulWE 2008 CD4 T cells: Fates, functions, and faults Blood 112 1557 1569 https://doi.org/10.1182/blood-2008-05-078154Search in Google Scholar

eISSN:
1661-4917
Lingua:
Inglese
Frequenza di pubblicazione:
Volume Open
Argomenti della rivista:
Medicina, Scienze medicali di base, Biochimica, Immunologia, Medicina clinica, altro, Chimica clinica