This work is licensed under the Creative Commons Attribution 4.0 International License.
Jin Z, Zhao-Xia L, Fan-Ke P, Wen-Juan Z, Min-Li W, Han-Yi Z. Progress in the study of reproductive toxicity of platinum-based antitumor drugs and their means of prevention. Front Pharmacol 2024;15:1327502. doi: 10.3389/fphar.2024.1327502JinZZhao-XiaLFan-KePWen-JuanZMin-LiWHan-YiZProgress in the study of reproductive toxicity of platinum-based antitumor drugs and their means of preventionFront Pharmacol202415132750210.3389/fphar.2024.1327502Open DOISearch in Google Scholar
Galluzzi L, Senovilla L, Vitale I, Michels J, Martins I, Kepp O, Castedo M, Kroemer G. Molecular mechanisms of cisplatin resistance. Oncogene 2012;31:1869–83. doi: 10.1038/onc.2011.384GalluzziLSenovillaLVitaleIMichelsJMartinsIKeppOCastedoMKroemerGMolecular mechanisms of cisplatin resistanceOncogene20123118698310.1038/onc.2011.384Open DOISearch in Google Scholar
Patel S, Sathyanathan V, Salaman SD. Molecular mechanisms underlying cisplatin-induced nephrotoxicity and the potential ameliorative effects of essential oils: A comprehensive review. Tissue Cell 2024;88:102377. doi: 10.1016/j.tice.2024.102377PatelSSathyanathanVSalamanSDMolecular mechanisms underlying cisplatin-induced nephrotoxicity and the potential ameliorative effects of essential oils: A comprehensive reviewTissue Cell20248810237710.1016/j.tice.2024.102377Open DOISearch in Google Scholar
Zhou J, Kang Y, Chen L, Wang H, Liu J, Zeng S, Yu L. The drugresistance mechanisms of five platinum-based antitumor agents. Front Pharmacol 2020;11:343. doi: 10.3389/fphar.2020.00343ZhouJKangYChenLWangHLiuJZengSYuLThe drugresistance mechanisms of five platinum-based antitumor agentsFront Pharmacol20201134310.3389/fphar.2020.00343Open DOISearch in Google Scholar
Katanić Stanković JS, Selaković D, Rosić G. Oxidative damage as a fundament of systemic toxicities induced by cisplatin-the crucial limitation or potential therapeutic target? Int J Mol Sci 2023;24(19):14574. doi: 10.3390/ijms241914574Katanić StankovićJSSelakovićDRosićGOxidative damage as a fundament of systemic toxicities induced by cisplatin-the crucial limitation or potential therapeutic target?Int J Mol Sci202324191457410.3390/ijms241914574Open DOISearch in Google Scholar
Rahimi A, Asadi F, Rezghi M, Kazemi S, Soorani F, Memariani Z. Natural products against cisplatin-induced male reproductive toxicity: A comprehensive review. J Biochem Mol Toxicol 2022;36(3):e22970. doi: 10.1002/jbt.22970RahimiAAsadiFRezghiMKazemiSSooraniFMemarianiZNatural products against cisplatin-induced male reproductive toxicity: A comprehensive reviewJ Biochem Mol Toxicol2022363e2297010.1002/jbt.22970Open DOISearch in Google Scholar
Gómez-Sierra T, Eugenio-Pérez D, Sánchez-Chinchillas A, Pedraza-Chaverri J. Role of food-derived antioxidants against cisplatin induced-nephrotoxicity. Food Chem Toxicol 2018;120:230–42. doi: 10.1016/j.fct.2018.07.018Gómez-SierraTEugenio-PérezDSánchez-ChinchillasAPedraza-ChaverriJRole of food-derived antioxidants against cisplatin induced-nephrotoxicityFood Chem Toxicol20181202304210.1016/j.fct.2018.07.018Open DOISearch in Google Scholar
Naveed M, Hejazi V, Abbas M, Kamboh AA, Khan GJ, Shumzaid M, Ahmad F, Babazadeh D, Fang-Fang X, Modarresi-Ghazani F, Wen-Hua L, Xiao-Hui Z. Chlorogenic acid (CGA): A pharmacological review and call for further research. Biomed Pharmacother 2018;97:67–74. doi: 10.1016/j.biopha.2017.10.064NaveedMHejaziVAbbasMKambohAAKhanGJShumzaidMAhmadFBabazadehDFang-FangXModarresi-GhazaniFWen-HuaLXiao-HuiZChlorogenic acid (CGA): A pharmacological review and call for further researchBiomed Pharmacother201897677410.1016/j.biopha.2017.10.064Open DOISearch in Google Scholar
Santana-Gálvez J, Cisneros-Zevallos L, Jacobo-Velázquez DA. Chlorogenic acid: Recent advances on its dual role as a food additive and a nutraceutical against metabolic syndrome. Molecules 2017;22(3):358. doi: 10.3390/molecules22030358Santana-GálvezJCisneros-ZevallosLJacobo-VelázquezDAChlorogenic acid: Recent advances on its dual role as a food additive and a nutraceutical against metabolic syndromeMolecules201722335810.3390/molecules22030358Open DOISearch in Google Scholar
Hada Y, Uchida HA, Otaka N, Onishi Y, Okamoto S, Nishiwaki M, Takemoto R, Takeuchi H, Wada J. The protective effect of chlorogenic acid on vascular senescence via the Nrf2/HO-1 pathway. Int J Mol Sci 2020;21(12):4527. doi: 10.3390/ijms21124527HadaYUchidaHAOtakaNOnishiYOkamotoSNishiwakiMTakemotoRTakeuchiHWadaJThe protective effect of chlorogenic acid on vascular senescence via the Nrf2/HO-1 pathwayInt J Mol Sci20202112452710.3390/ijms21124527Open DOISearch in Google Scholar
Liu D, Wang H, Zhang Y, Zhang Z. Protective effects of chlorogenic acid on cerebral ischemia/reperfusion injury rats by regulating oxidative stress-related Nrf2 pathway. Drug Des Devel Ther 2020;14:51–60. doi: 10.2147/DDDT.S228751LiuDWangHZhangYZhangZProtective effects of chlorogenic acid on cerebral ischemia/reperfusion injury rats by regulating oxidative stress-related Nrf2 pathwayDrug Des Devel Ther202014516010.2147/DDDT.S228751Open DOISearch in Google Scholar
Wang D, Hou J, Wan J, Yang Y, Liu S, Li X, Li W, Dai X, Zhou P, Liu W, Wang P. Dietary chlorogenic acid ameliorates oxidative stress and improves endothelial function in diabetic mice via Nrf2 activation. J Int Med Res 2021;49(1):300060520985363. doi: 10.1177/0300060520985363WangDHouJWanJYangYLiuSLiXLiWDaiXZhouPLiuWWangPDietary chlorogenic acid ameliorates oxidative stress and improves endothelial function in diabetic mice via Nrf2 activationJ Int Med Res2021491300060520985363.10.1177/0300060520985363Open DOISearch in Google Scholar
Mapuskar KA, Pulliam CF, Zepeda-Orozco D, Griffin BR, Furqan M, Spitz DR, Allen BG. Redox regulation of Nrf2 in cisplatin-induced kidney injury. Antioxidants (Basel) 2023;12(9):1728. doi: 10.3390/antiox12091728MapuskarKAPulliamCFZepeda-OrozcoDGriffinBRFurqanMSpitzDRAllenBGRedox regulation of Nrf2 in cisplatin-induced kidney injuryAntioxidants (Basel)2023129172810.3390/antiox12091728Open DOISearch in Google Scholar
Ali FEM, Hassanein EHM, Abd El-Ghafar OAM, Rashwan EK, Saleh FM, Atwa AM. Exploring the cardioprotective effects of canagliflozin against cisplatin-induced cardiotoxicity: Role of iNOS/NF-κB, Nrf2, and Bax/cytochrome C/Bcl-2 signals. J Biochem Mol Toxicol 2023;37(4):e23309. doi: 10.1002/jbt.23309AliFEMHassaneinEHMAbd El-GhafarOAMRashwanEKSalehFMAtwaAMExploring the cardioprotective effects of canagliflozin against cisplatin-induced cardiotoxicity: Role of iNOS/NF-κB, Nrf2, and Bax/cytochrome C/Bcl-2 signalsJ Biochem Mol Toxicol2023374e2330910.1002/jbt.23309Open DOISearch in Google Scholar
Xu Q, Zhang Z, Tang M, Xing C, Chen H, Zheng K, Zhao Z, Zhou S, Zhao AZ, Li F, Mu Y. Endogenous production of ω-3 polyunsaturated fatty acids mitigates cisplatin-induced myelosuppression by regulating NRF2-MDM2-p53 signaling pathway. Free Radic Biol Med 2023;201:14–25. doi: 10.1016/j.freeradbiomed.2023.03.005XuQZhangZTangMXingCChenHZhengKZhaoZZhouSZhaoAZLiFMuYEndogenous production of ω-3 polyunsaturated fatty acids mitigates cisplatin-induced myelosuppression by regulating NRF2-MDM2-p53 signaling pathwayFree Radic Biol Med2023201142510.1016/j.freeradbiomed.2023.03.005Open DOISearch in Google Scholar
Yan Q, Li M, Dong L, Luo J, Zhong X, Shi F, Ye G, Zhao L, Fu H, Shu G, Zhao X, Zhang W, Yin H, Li Y, Tang H. Preparation, characterization and protective effect of chitosan-tripolyphosphate encapsulated dihydromyricetin nanoparticles on acute kidney injury caused by cisplatin. Int J Biol Macromol 2023;245:125569. doi: 10.1016/j.ijbiomac.2023.125569YanQLiMDongLLuoJZhongXShiFYeGZhaoLFuHShuGZhaoXZhangWYinHLiYTangHPreparation, characterization and protective effect of chitosan-tripolyphosphate encapsulated dihydromyricetin nanoparticles on acute kidney injury caused by cisplatinInt J Biol Macromol202324512556910.1016/j.ijbiomac.2023.125569Open DOISearch in Google Scholar
Owumi SE, Anaikor RA, Arunsi UO, Adaramoye OA, Oyelere AK. Chlorogenic acid co-administration abates tamoxifen-mediated reproductive toxicities in male rats: An experimental approach. J Food Biochem 2021;45(2):e13615. doi: 10.1111/jfbc.13615OwumiSEAnaikorRAArunsiUOAdaramoyeOAOyelereAKChlorogenic acid co-administration abates tamoxifen-mediated reproductive toxicities in male rats: An experimental approachJ Food Biochem2021452e1361510.1111/jfbc.13615Open DOISearch in Google Scholar
Ali N, Rashid S, Nafees S, Hasan SK, Shahid A, Majed F, Sultana S. Protective effect of chlorogenic acid against methotrexate induced oxidative stress, inflammation and apoptosis in rat liver: An experimental approach. Chem Biol Interact 2017;272:80–91. doi: 10.1016/j.cbi.2017.05.002AliNRashidSNafeesSHasanSKShahidAMajedFSultanaSProtective effect of chlorogenic acid against methotrexate induced oxidative stress, inflammation and apoptosis in rat liver: An experimental approachChem Biol Interact2017272809110.1016/j.cbi.2017.05.002Open DOISearch in Google Scholar
Komeili-Movahhed T, Heidari F, Moslehi A. Chlorogenic acid alleviated testicular inflammation and apoptosis in tunicamycin induced endoplasmic reticulum stress. Physiol Int 2023;110:19–33. doi: 10.1556/2060.2023.00132Komeili-MovahhedTHeidariFMoslehiAChlorogenic acid alleviated testicular inflammation and apoptosis in tunicamycin induced endoplasmic reticulum stressPhysiol Int2023110193310.1556/2060.2023.00132Open DOISearch in Google Scholar
Percie du Sert N, Hurst V, Ahluwalia A, Alam S, Avey MT, Baker M, Browne WJ, Clark A, Cuthill IC, Dirnagl U, Emerson M, Garner P, Holgate ST, Howells DW, Karp NA, Lazic SE, Lidster K, MacCallum CJ, Macleod M, Pearl EJ, Petersen OH, Rawle F, Reynolds P, Rooney K, Sena ES, Silberberg SD, Steckler T, Würbel H. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. PLoS Biol 2020;18(7):e3000410. doi: 10.1371/journal.pbio.3000410Percie du SertNHurstVAhluwaliaAAlamSAveyMTBakerMBrowneWJClarkACuthillICDirnaglUEmersonMGarnerPHolgateSTHowellsDWKarpNALazicSELidsterKMacCallumCJMacleodMPearlEJPetersenOHRawleFReynoldsPRooneyKSenaESSilberbergSDStecklerTWürbelHThe ARRIVE guidelines 2.0: Updated guidelines for reporting animal researchPLoS Biol2020187e300041010.1371/journal.pbio.3000410Open DOISearch in Google Scholar
Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the protection of animals used for scientific purposes [displayed 10 June 2025]. Available at https://eur-lex.europa.eu/eli/dir/2010/63/oj/engDirective 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the protection of animals used for scientific purposes [displayed 10 June 2025]Available at https://eur-lex.europa.eu/eli/dir/2010/63/oj/engSearch in Google Scholar
Mentese A, Demir S, Mungan SA, Alemdar NT, Demir EA, Aliyazicioglu Y. Gentisic acid ameliorates cisplatin-induced reprotoxicity through suppressing endoplasmic reticulum stress and upregulating Nrf2 pathway. Tissue Cell 2023;85:102256. doi: 10.1016/j.tice.2023.102256MenteseADemirSMunganSAAlemdarNTDemirEAAliyaziciogluYGentisic acid ameliorates cisplatin-induced reprotoxicity through suppressing endoplasmic reticulum stress and upregulating Nrf2 pathwayTissue Cell20238510225610.1016/j.tice.2023.102256Open DOISearch in Google Scholar
Demir S, Mentese A, Usta ZT, Alemdar NT, Demir EA, Aliyazicioglu Y. Alpha-pinene neutralizes cisplatin-induced reproductive toxicity in male rats through activation of Nrf2 pathway. Int Urol Nephrol 2024;56:527–37. doi: 10.1007/s11255-023-03817-5DemirSMenteseAUstaZTAlemdarNTDemirEAAliyaziciogluYAlpha-pinene neutralizes cisplatin-induced reproductive toxicity in male rats through activation of Nrf2 pathwayInt Urol Nephrol2024565273710.1007/s11255-023-03817-5Open DOISearch in Google Scholar
Du WY, Chang C, Zhang Y, Liu YY, Sun K, Wang CS, Wang MX, Liu Y, Wang F, Fan JY, Li PT, Han JY. High-dose chlorogenic acid induces inflammation reactions and oxidative stress injury in rats without implication of mast cell degranulation. J Ethnopharmacol 2013;147:74–83. doi: 10.1016/j.jep.2013.01.042DuWYChangCZhangYLiuYYSunKWangCSWangMXLiuYWangFFanJYLiPTHanJYHigh-dose chlorogenic acid induces inflammation reactions and oxidative stress injury in rats without implication of mast cell degranulationJ Ethnopharmacol2013147748310.1016/j.jep.2013.01.042Open DOISearch in Google Scholar
Tom EN, Girard-Thernier C, Demougeot C. The Janus face of chlorogenic acid on vascular reactivity: A study on rat isolated vessels. Phytomedicine 2016;23:1037–42. doi: 10.1016/j.phymed.2016.06.012TomENGirard-ThernierCDemougeotCThe Janus face of chlorogenic acid on vascular reactivity: A study on rat isolated vesselsPhytomedicine20162310374210.1016/j.phymed.2016.06.012Open DOISearch in Google Scholar
Domitrović R, Cvijanović O, Šušnić V, Katalinić N. Renoprotective mechanisms of chlorogenic acid in cisplatin-induced kidney injury. Toxicology 2014;324:98–107. doi: 10.1016/j.tox.2014.07.004DomitrovićRCvijanovićOŠušnićVKatalinićNRenoprotective mechanisms of chlorogenic acid in cisplatin-induced kidney injuryToxicology20143249810710.1016/j.tox.2014.07.004Open DOISearch in Google Scholar
Ayazoglu Demir E, Mentese A, Livaoglu A, Alemdar NT, Aliyazicioglu Y, Demir S. Chlorogenic acid attenuates cisplatin-induced ovarian injury in rats. Drug Chem Toxicol 2024;47:213–7. doi: 10.1080/01480545.2023.2172181Ayazoglu DemirEMenteseALivaogluAAlemdarNTAliyaziciogluYDemirSChlorogenic acid attenuates cisplatin-induced ovarian injury in ratsDrug Chem Toxicol202447213710.1080/01480545.2023.2172181Open DOISearch in Google Scholar
Mentese A, Demir S, Alemdar NT, Demir EA, Aliyazıcıoğlu Y. The effect of chlorogenic acid on methotrexate-induced oxidative stress and inflammation in lung tissue of rats. Farabi Med J 2024;3:71–8. doi: 10.59518/farabimedj.1504348MenteseADemirSAlemdarNTDemirEAAliyazıcıoğluYThe effect of chlorogenic acid on methotrexate-induced oxidative stress and inflammation in lung tissue of ratsFarabi Med J2024371810.59518/farabimedj.1504348Open DOISearch in Google Scholar
Somani SM, Husain K, Whitworth C, Trammell GL, Malafa M, Rybak LP. Dose-dependent protection by lipoic acid against cisplatin-induced nephrotoxicity in rats: antioxidant defense system. Pharmacol Toxicol 2000;86:234–41. doi: 10.1034/j.1600-0773.2000.d01-41.xSomaniSMHusainKWhitworthCTrammellGLMalafaMRybakLPDose-dependent protection by lipoic acid against cisplatin-induced nephrotoxicity in rats: antioxidant defense systemPharmacol Toxicol2000862344110.1034/j.1600-0773.2000.d01-41.xOpen DOISearch in Google Scholar
Koc A, Duru M, Ciralik H, Akcan R, Sogut S. Protective agent, erdosteine, against cisplatin-induced hepatic oxidant injury in rats. Mol Cell Biochem 2005;278:79–84. doi: 10.1007/s11010-005-6630-zKocADuruMCiralikHAkcanRSogutSProtective agent, erdosteine, against cisplatin-induced hepatic oxidant injury in ratsMol Cell Biochem2005278798410.1007/s11010-005-6630-zOpen DOISearch in Google Scholar
Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC. Measurement of protein using bicinchoninic acid. Anal Biochem 1985;150:76–85. doi: 10.1016/0003-2697(85)90442-7SmithPKKrohnRIHermansonGTMalliaAKGartnerFHProvenzanoMDFujimotoEKGoekeNMOlsonBJKlenkDCMeasurement of protein using bicinchoninic acidAnal Biochem1985150768510.1016/0003-2697(85)90442-7Open DOISearch in Google Scholar
Mihara M, Uchiyama M. Determination of malonaldehyde precursor in tissues by thiobarbituric acid test. Anal Biochem 1978;86:271–8. doi: 10.1016/0003-2697(78)90342-1MiharaMUchiyamaMDetermination of malonaldehyde precursor in tissues by thiobarbituric acid testAnal Biochem197886271810.1016/0003-2697(78)90342-1Open DOISearch in Google Scholar
Feldman AT, Wolfe D. Tissue processing and hematoxylin and eosin staining. Methods Mol Biol 2014;1180:31–43. doi: 10.1007/978-1-4939-1050-2_3FeldmanATWolfeDTissue processing and hematoxylin and eosin stainingMethods Mol Biol20141180314310.1007/978-1-4939-1050-2_3Open DOISearch in Google Scholar
Johnsen SG. Testicular biopsy score count – a method for registration of spermatogenesis in human testes: normal values and results in 335 hypogonadal males. Hormones 1970;1:2–25. doi: 10.1159/000178170JohnsenSGTesticular biopsy score count – a method for registration of spermatogenesis in human testes: normal values and results in 335 hypogonadal malesHormones1970122510.1159/000178170Open DOISearch in Google Scholar
Lewis-Jones DI, Kerrigan DD. A modified Johnsen's count for evaluation of spermatogenesis in the rat. IRCS Med Sci 1985;13:510–1.Lewis-JonesDIKerriganDDA modified Johnsen's count for evaluation of spermatogenesis in the ratIRCS Med Sci1985135101Search in Google Scholar
Abdel-Wahab BA, Walbi IA, Albarqi HA, Ali FEM, Hassanein EHM. Roflumilast protects from cisplatin-induced testicular toxicity in male rats and enhances its cytotoxicity in prostate cancer cell line: Role of NF-κB-p65, cAMP/PKA and Nrf2/HO-1, NQO1 signaling. Food Chem Toxicol 2021;151:112133. doi: 10.1016/j.fct.2021.112133Abdel-WahabBAWalbiIAAlbarqiHAAliFEMHassaneinEHMRoflumilast protects from cisplatin-induced testicular toxicity in male rats and enhances its cytotoxicity in prostate cancer cell line: Role of NF-κB-p65, cAMP/PKA and Nrf2/HO-1, NQO1 signalingFood Chem Toxicol202115111213310.1016/j.fct.2021.112133Open DOISearch in Google Scholar
Ismail HY, Shaker NA, Hussein S, Tohamy A, Fathi M, Rizk H, Wally YR. Cisplatin-induced azoospermia and testicular damage ameliorated by adipose-derived mesenchymal stem cells. Biol Res 2023;56(1):2. doi: 10.1186/s40659-022-00410-5IsmailHYShakerNAHusseinSTohamyAFathiMRizkHWallyYRCisplatin-induced azoospermia and testicular damage ameliorated by adipose-derived mesenchymal stem cellsBiol Res2023561210.1186/s40659-022-00410-5Open DOISearch in Google Scholar
Chirino YI, Pedraza-Chaverri J. Role of oxidative and nitrosative stress in cisplatin-induced nephrotoxicity. Exp Toxicol Pathol 2009;61:223–42. doi: 10.1016/j.etp.2008.09.003ChirinoYIPedraza-ChaverriJRole of oxidative and nitrosative stress in cisplatin-induced nephrotoxicityExp Toxicol Pathol2009612234210.1016/j.etp.2008.09.003Open DOISearch in Google Scholar
Akhigbe RE, Adelowo OE, Ajani EO, Oyesetan RI, Oladapo DD, Akhigbe TM. Testicular toxicity in cisplatin-treated Wistar rats is mitigated by Daflon and associated with modulation of Nrf2/HO-1 and TLR4/NF-kB signaling. J Trace Elem Med Biol 2024;85:127489. doi: 10.1016/j.jtemb.2024.127489AkhigbeREAdelowoOEAjaniEOOyesetanRIOladapoDDAkhigbeTMTesticular toxicity in cisplatin-treated Wistar rats is mitigated by Daflon and associated with modulation of Nrf2/HO-1 and TLR4/NF-kB signalingJ Trace Elem Med Biol20248512748910.1016/j.jtemb.2024.127489Open DOISearch in Google Scholar
Manohar S, Leung N. Cisplatin nephrotoxicity: a review of the literature. J Nephrol 2018;31:15–25. doi: 10.1007/s40620-017-0392-zManoharSLeungNCisplatin nephrotoxicity: a review of the literatureJ Nephrol201831152510.1007/s40620-017-0392-zOpen DOISearch in Google Scholar
Zavala-Valencia AC, Velasco-Hidalgo L, Martínez-Avalos A, Castillejos-López M, Torres-Espíndola LM. Effect of N-acetylcysteine on cisplatin toxicity: A review of the literature. Biologics 2024;18:7–19. doi: 10.2147/BTT.S438150Zavala-ValenciaACVelasco-HidalgoLMartínez-AvalosACastillejos-LópezMTorres-EspíndolaLMEffect of N-acetylcysteine on cisplatin toxicity: A review of the literatureBiologics20241871910.2147/BTT.S438150Open DOISearch in Google Scholar
Xu Y, Wang C, Li Z. A new strategy of promoting cisplatin chemotherapeutic efficiency by targeting endoplasmic reticulum stress. Mol Clin Oncol 2014;2:3–7. doi: 10.3892/mco.2013.202XuYWangCLiZA new strategy of promoting cisplatin chemotherapeutic efficiency by targeting endoplasmic reticulum stressMol Clin Oncol201423710.3892/mco.2013.202Open DOISearch in Google Scholar
Gorman AM, Healy SJ, Jäger R, Samali A. Stress management at the ER: regulators of ER stress-induced apoptosis. Pharmacol Ther 2012;134:306–16. doi: 10.1016/j.pharmthera.2012.02.003GormanAMHealySJJägerRSamaliAStress management at the ER: regulators of ER stress-induced apoptosisPharmacol Ther20121343061610.1016/j.pharmthera.2012.02.003Open DOISearch in Google Scholar
Chen X, Shi C, He M, Xiong S, Xia X. Endoplasmic reticulum stress: molecular mechanism and therapeutic targets. Signal Transduct Target Ther 2023;8:352. doi: 10.1038/s41392-023-01570-wChenXShiCHeMXiongSXiaXEndoplasmic reticulum stress: molecular mechanism and therapeutic targetsSignal Transduct Target Ther2023835210.1038/s41392-023-01570-wOpen DOISearch in Google Scholar
Foufelle F, Fromenty B. Role of endoplasmic reticulum stress in druginduced toxicity. Pharmacol Res Perspect 2016;4(1):e00211. doi: 10.1002/prp2.211FoufelleFFromentyBRole of endoplasmic reticulum stress in druginduced toxicityPharmacol Res Perspect201641e0021110.1002/prp2.211Open DOISearch in Google Scholar
Wang L, Pan X, Jiang L, Chu Y, Gao S, Jiang X, Zhang Y, Chen Y, Luo S, Peng C. The biological activity mechanism of chlorogenic acid and its applications in food industry: A review. Front Nutr 2022;9:943911. doi: 10.3389/fnut.2022.943911WangLPanXJiangLChuYGaoSJiangXZhangYChenYLuoSPengCThe biological activity mechanism of chlorogenic acid and its applications in food industry: A reviewFront Nutr2022994391110.3389/fnut.2022.943911Open DOISearch in Google Scholar
Shi A, Shi H, Wang Y, Liu X, Cheng Y, Li H, Zhao H, Wang S, Dong L. Activation of Nrf2 pathway and inhibition of NLRP3 inflammasome activation contribute to the protective effect of chlorogenic acid on acute liver injury. Int Immunopharmacol 2018;54:125–30. doi: 10.1016/j.intimp.2017.11.007ShiAShiHWangYLiuXChengYLiHZhaoHWangSDongLActivation of Nrf2 pathway and inhibition of NLRP3 inflammasome activation contribute to the protective effect of chlorogenic acid on acute liver injuryInt Immunopharmacol2018541253010.1016/j.intimp.2017.11.007Open DOISearch in Google Scholar
Wei M, Zheng Z, Shi L, Jin Y, Ji L. Natural polyphenol chlorogenic acid protects against acetaminophen-induced hepatotoxicity by activating ERK/Nrf2 antioxidative pathway. Toxicol Sci 2018;162:99–112. doi: 10.1093/toxsci/kfx230WeiMZhengZShiLJinYJiLNatural polyphenol chlorogenic acid protects against acetaminophen-induced hepatotoxicity by activating ERK/Nrf2 antioxidative pathwayToxicol Sci20181629911210.1093/toxsci/kfx230Open DOISearch in Google Scholar
Gao W, Guo L, Yang Y, Wang Y, Xia S, Gong H, Zhang BK, Yan M. Dissecting the crosstalk between Nrf2 and NF-κB response pathways in drug-induced toxicity. Front Cell Dev Biol 2022;9:809952. doi: 10.3389/fcell.2021.809952GaoWGuoLYangYWangYXiaSGongHZhangBKYanMDissecting the crosstalk between Nrf2 and NF-κB response pathways in drug-induced toxicityFront Cell Dev Biol2022980995210.3389/fcell.2021.809952Open DOISearch in Google Scholar
Kazaz IO, Demir S, Kerimoglu G, Colak F, Turkmen Alemdar N, Yilmaz Dogan S, Bostan S, Mentese A. Chlorogenic acid ameliorates torsion/detorsion-induced testicular injury via decreasing endoplasmic reticulum stress. J Pediatr Urol 2022;18(3):289.e1–7. doi: 10.1016/j.jpurol.2022.02.013KazazIODemirSKerimogluGColakFTurkmen AlemdarNYilmaz DoganSBostanSMenteseAChlorogenic acid ameliorates torsion/detorsion-induced testicular injury via decreasing endoplasmic reticulum stressJ Pediatr Urol2022183289.e1710.1016/j.jpurol.2022.02.013Open DOISearch in Google Scholar
Song L, Wu T, Zhang L, Wan J, Ruan Z. Chlorogenic acid improves the intestinal barrier by relieving endoplasmic reticulum stress and inhibiting ROCK/MLCK signaling pathways. Food Funct 2022;13:4562–75. doi: 10.1039/D1FO02662CSongLWuTZhangLWanJRuanZChlorogenic acid improves the intestinal barrier by relieving endoplasmic reticulum stress and inhibiting ROCK/MLCK signaling pathwaysFood Funct20221345627510.1039/D1FO02662COpen DOISearch in Google Scholar
Shah MA, Kang JB, Park DJ, Kim MO, Koh PO. Chlorogenic acid alleviates cerebral ischemia-induced neuroinflammation via attenuating nuclear factor kappa B activation. Neurosci Lett 2022;773:136495. doi: 10.1016/j.neulet.2022ShahMAKangJBParkDJKimMOKohPOChlorogenic acid alleviates cerebral ischemia-induced neuroinflammation via attenuating nuclear factor kappa B activationNeurosci Lett202277313649510.1016/j.neulet.2022Open DOISearch in Google Scholar
Li K, Feng Z, Wang L, Ma X, Wang L, Liu K, Geng X, Peng C. Chlorogenic acid alleviates hepatic ischemia-reperfusion injury by inhibiting oxidative stress, inflammation, and mitochondria-mediated apoptosis in vivo and in vitro. Inflammation 2023;46:1061–76. doi: 10.1007/s10753-023-01792-8LiKFengZWangLMaXWangLLiuKGengXPengCChlorogenic acid alleviates hepatic ischemia-reperfusion injury by inhibiting oxidative stress, inflammation, and mitochondria-mediated apoptosis in vivo and in vitroInflammation20234610617610.1007/s10753-023-01792-8Open DOISearch in Google Scholar
Ontawong A, Duangjai A, Vaddhanaphuti CS, Amornlerdpison D, Pengnet S, Kamkaew N. Chlorogenic acid rich in coffee pulp extract suppresses inflammatory status by inhibiting the p38, MAPK, and NF-κB pathways. Heliyon 2023;9(3):e13917. doi: 10.1016/j.heliyon.2023.e13917OntawongADuangjaiAVaddhanaphutiCSAmornlerdpisonDPengnetSKamkaewNChlorogenic acid rich in coffee pulp extract suppresses inflammatory status by inhibiting the p38, MAPK, and NF-κB pathwaysHeliyon202393e1391710.1016/j.heliyon.2023.e13917Open DOISearch in Google Scholar
El-Khadragy MF, Al-Megrin WA, Alomar S, Alkhuriji AF, Metwally DM, Mahgoub S, Amin HK, Habotta OA, Abdel Moneim AE, Albeltagy RS. Chlorogenic acid abates male reproductive dysfunction in arsenic-exposed mice via attenuation of testicular oxidoinflammatory stress and apoptotic responses. Chem Biol Interact 2021;333:109333. doi: 10.1016/j.cbi.2020.109333El-KhadragyMFAl-MegrinWAAlomarSAlkhurijiAFMetwallyDMMahgoubSAminHKHabottaOAAbdel MoneimAEAlbeltagyRSChlorogenic acid abates male reproductive dysfunction in arsenic-exposed mice via attenuation of testicular oxidoinflammatory stress and apoptotic responsesChem Biol Interact202133310933310.1016/j.cbi.2020.109333Open DOISearch in Google Scholar