This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.
Zhang W, Jiang X, Bao J, Wang Y, Liu H, Tang L. Exosomes in pathogen infections: A bridge to deliver molecules and link functions. Front Immunol 2018;9:90. doi: 10.3389/fimmu.2018.00090ZhangWJiangXBaoJWangYLiuHTangL.Exosomes in pathogen infections: A bridge to deliver molecules and link functions. Front Immunol2018;9:90. doi: 10.3389/fimmu.2018.00090Open DOISearch in Google Scholar
Johnstone RM, Adam M, Hammond JR, Orr L, Turbide C. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). J Biol Chem 1987;262:9412–20. doi: 10.1016/S0021-9258(18)48095-7JohnstoneRMAdamMHammondJROrrLTurbideC.Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). J Biol Chem1987;262:9412–20. doi: 10.1016/S0021-9258(18)48095-7Open DOISearch in Google Scholar
Chung M, Rajakumar G, Venkidasamy B, Subramanian U, Thiruvengadam M. Exosomes: Current use and future applications. Clin Chin Acta 2020;500:226–32. doi: 10.1016/j.cca.2019.10.022ChungMRajakumarGVenkidasamyBSubramanianUThiruvengadamM.Exosomes: Current use and future applications. Clin Chin Acta2020;500:226–32. doi: 10.1016/j.cca.2019.10.022Open DOISearch in Google Scholar
Chen YF, Luh F, Ho YS, Yen Y. Exosomes: a review of biologic function, diagnostic and targeted therapy applications, and clinical trials. J Biomed Sci 2024;31:67. doi: 10.1186/s12929-024-01055-0ChenYFLuhFHoYSYenY.Exosomes: a review of biologic function, diagnostic and targeted therapy applications, and clinical trials. J Biomed Sci2024;31:67. doi: 10.1186/s12929-024-01055-0Open DOISearch in Google Scholar
Yáñez-Mó M, Siljander PRM, Andreu Z, Zavec AB, Borràs FE, Buzas EI, Casal E, Cappello F, Carvalho J, Colás E, Cordeiro-da Silva A, Fais S, Falcon-Perez JM, Ghobrial IM, Giebel B, Gimona M, Graner M, Gursel I, Gursel M, Heegaard NH, Hendrix A, Kierulf P, Kokubun K, Kosanovic M, Kralj-Iglic V, Krämer-Albers EM, Laitinen S, Lässer C, Lener T, Ligeti E, Linē A, Lipps G, Llorente A, Lötvall J, Manček-Keber M, Marcilla A, Mittelbrunn M, Nazarenko I, Nolte-’t Hoen EN, Nyman TA, O’Driscoll L, Olivan M, Oliveira C, Pállinger É, Del Portillo HA, Reventós J, Rigau M, Rohde E, Sammar M, Sánchez-Madrid F, Santarém N, Schallmoser K, Ostenfeld MS, Stoorvogel W, Stukelj R, Van der Grein SG, Vasconcelos MH, Wauben MH, De Wever O. Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles 2015;4:27066. doi: 10.3402/jev.v4.27066Yáñez-MóMSiljanderPRMAndreuZZavecABBorràsFEBuzasEICasalECappelloFCarvalhoJColásECordeiro-da SilvaAFaisSFalcon-PerezJMGhobrialIMGiebelBGimonaMGranerMGurselIGurselMHeegaardNHHendrixAKierulfPKokubunKKosanovicMKralj-IglicVKrämer-AlbersEMLaitinenSLässerCLenerTLigetiELinēALippsGLlorenteALötvallJManček-KeberMMarcillaAMittelbrunnMNazarenkoINolte-’t HoenENNymanTAO’DriscollLOlivanMOliveiraCPállingerÉDel PortilloHAReventósJRigauMRohdeESammarMSánchez-MadridFSantarémNSchallmoserKOstenfeldMSStoorvogelWStukeljRVan der GreinSGVasconcelosMHWaubenMHDe WeverO.Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles2015;4:27066. doi: 10.3402/jev.v4.27066Open DOISearch in Google Scholar
Hessvik NP, Llorente A. Current knowledge on exosome biogenesis and release. Cell Mol Life Sci 2018;75:193–208. doi: 10.1007/s00018-017-2595-9HessvikNPLlorenteA.Current knowledge on exosome biogenesis and release. Cell Mol Life Sci2018;75:193–208. doi: 10.1007/s00018-017-2595-9Open DOISearch in Google Scholar
Gurunathan S, Kang MH, Kim JH, Jeyaraj M, Qasim M. Review of the isolation, characterization, biological function, and multifarious therapeutic approaches of exosomes. Cells 2019;8(4):307. doi: 10.3390/cells8040307GurunathanSKangMHKimJHJeyarajMQasimM.Review of the isolation, characterization, biological function, and multifarious therapeutic approaches of exosomes. Cells2019;8(4):307. doi: 10.3390/cells8040307Open DOISearch in Google Scholar
Xu T, Huangfu B, He X, Huang K. Exosomes as mediators of signal transmitters in biotoxins toxicity: a comprehensive review. Cell Biol Toxicol 2024;40:27. doi: 10.1007/s10565-024-09867-4XuTHuangfuBHeXHuangK.Exosomes as mediators of signal transmitters in biotoxins toxicity: a comprehensive review. Cell Biol Toxicol2024;40:27. doi: 10.1007/s10565-024-09867-4Open DOISearch in Google Scholar
Thery C, Zitvogel L, Amigorena S. Exosomes: composition, biogenesis and function. Nat Rev Immunol 2002;2:569–79. doi: 10.1038/nri855TheryCZitvogelLAmigorenaS.Exosomes: composition, biogenesis and function. Nat Rev Immunol2002;2:569–79. doi: 10.1038/nri855Open DOISearch in Google Scholar
Guay C, Regazzi R. Exosomes as new players in metabolic organ cross-talk. Diabetes Obes Metab 2017;19(Suppl 1):137–46. doi: 10.1111/dom.13027GuayCRegazziR.Exosomes as new players in metabolic organ cross-talk. Diabetes Obes Metab2017;19(Suppl 1):137–46. doi: 10.1111/dom.13027Open DOISearch in Google Scholar
Zhang B, Yin Y, Lai RC, Tan SS, Choo AB, Lim SK. Mesenchymal stem cells secrete immunologically active exosomes. Stem Cells Dev 2014;23:1233–44. doi: 10.1089/scd.2013.0479ZhangBYinYLaiRCTanSSChooABLimSK.Mesenchymal stem cells secrete immunologically active exosomes. Stem Cells Dev2014;23:1233–44. doi: 10.1089/scd.2013.0479Open DOISearch in Google Scholar
Nakayama M. Antigen presentation by MHC-dressed cells. Front Immunol 2014;5:672. doi: 10.3389/fimmu.2014.00672NakayamaM.Antigen presentation by MHC-dressed cells. Front Immunol2014;5:672. doi: 10.3389/fimmu.2014.00672Open DOISearch in Google Scholar
Mittelbrunn M, Gutierrez-Vazquez C, Villarroya-Beltri C, Gonzalez S, Sanchez-Cabo F, Gonzalez MA, Bernad A, Sánchez-Madrid F. Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells. Nat Commun 2011;2:282. doi: 10.1038/ncomms1285MittelbrunnMGutierrez-VazquezCVillarroya-BeltriCGonzalezSSanchez-CaboFGonzalezMABernadASánchez-MadridF.Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells. Nat Commun2011;2:282. doi: 10.1038/ncomms1285Open DOISearch in Google Scholar
Takeuchi T, Suzuki M, Fujikake N, Popiel HA, Kikuchi H, Futaki S, Wada K, Nagai Y. Intercellular chaperone transmission via exosomes contributes to mainte nance of protein homeostasis at the organismal level. Proc Natl Acad Sci USA 2015;112(19):E2497–506. doi: 10.1073/pnas.1412651112TakeuchiTSuzukiMFujikakeNPopielHAKikuchiHFutakiSWadaKNagaiY.Intercellular chaperone transmission via exosomes contributes to mainte nance of protein homeostasis at the organismal level. Proc Natl Acad Sci USA2015;112(19):E2497–506. doi: 10.1073/pnas.1412651112Open DOISearch in Google Scholar
Cata JP, Uhelski ML, Gorur A, Dougherty PM. Nociception and pain: new roles for exosomes. Neuroscientist 2021;28:349–63. doi: 10.1177/10738584211027105CataJPUhelskiMLGorurADoughertyPM.Nociception and pain: new roles for exosomes. Neuroscientist2021;28:349–63. doi: 10.1177/10738584211027105Open DOISearch in Google Scholar
Isola AL, Chen S. Exosomes: the messengers of health and disease. Curr Neuropharmacol 2017;15:157–65. doi: 10.2174/1570159X14666160825160421IsolaALChenS.Exosomes: the messengers of health and disease. Curr Neuropharmacol2017;15:157–65. doi: 10.2174/1570159X14666160825160421Open DOISearch in Google Scholar
Inotsuka R, Udono M, Yamatsu A, Kim M, Katakura Y. Exosome-mediated activation of neuronal cells triggered by γ-aminobutyric acid (GABA). Nutrients 2021;13(8):2544. doi: 10.3390/nu13082544InotsukaRUdonoMYamatsuAKimMKatakuraY.Exosome-mediated activation of neuronal cells triggered by γ-aminobutyric acid (GABA). Nutrients2021;13(8):2544. doi: 10.3390/nu13082544Open DOISearch in Google Scholar
Tao SC, Guo SC. Extracellular vesicles in bone: “dogrobbers” in the “eternal battle field”. Cell Commun Signal 2019;17:6. doi: 10.1186/s12964-019-0319-5TaoSCGuoSC.Extracellular vesicles in bone: “dogrobbers” in the “eternal battle field”. Cell Commun Signal2019;17:6. doi: 10.1186/s12964-019-0319-5Open DOISearch in Google Scholar
Vučemilović A, Volf M. Comprehensive approach to clinical decisionmaking strategy, illustrated by the Gulf War. Rev Environ Health 2024. doi: 10.1515/reveh-2024-0070 (Online ahead of print)VučemilovićAVolfM.Comprehensive approach to clinical decisionmaking strategy, illustrated by the Gulf War. Rev Environ Health2024. doi: 10.1515/reveh-2024-0070 (Online ahead of print)Open DOISearch in Google Scholar
Emerson LE, Chanel A, Mosby I, Enslow S, Hui WW, Jones MK, Ferraro MJ. Changes in lipid composition of host-derived extracellular vesicles following Salmonella infection. Microbiol Spectr 2024;12(1):e02796-23. doi: 10.1128/spectrum.02796-23EmersonLEChanelAMosbyIEnslowSHuiWWJonesMKFerraroMJ.Changes in lipid composition of host-derived extracellular vesicles following Salmonella infection. Microbiol Spectr2024;12(1):e02796–23. doi: 10.1128/spectrum.02796-23Open DOISearch in Google Scholar
Hambo S, Harb H. Extracellular vesicles and their role in lung infections. Int J Mol Sci 2023;24:16139. doi: 10.3390/ijms242216139HamboSHarbH.Extracellular vesicles and their role in lung infections. Int J Mol Sci2023;24:16139. doi: 10.3390/ijms242216139Open DOISearch in Google Scholar
Kuehn MJ, Kesty NC. Bacterial outer membrane vesicles and the host-pathogen interaction. Genes Dev 2005;19:2645-55. doi: 10.1101/gad.1299905KuehnMJKestyNC.Bacterial outer membrane vesicles and the host-pathogen interaction. Genes Dev2005;19:2645–55. doi: 10.1101/gad.1299905Open DOISearch in Google Scholar
Husmann M, Beckmann E, Boller K, Kloft N, Tenzer S, Bobkiewicz W, Neukirch C, Bayley H, Bhakdi S. Elimination of a bacterial poreforming toxin by sequential endocytosis and exocytosis. FEBS Lett 2009;583:337–44. doi: 10.1016/j.febslet.2008.12.028HusmannMBeckmannEBollerKKloftNTenzerSBobkiewiczWNeukirchCBayleyHBhakdiS.Elimination of a bacterial poreforming toxin by sequential endocytosis and exocytosis. FEBS Lett2009;583:337–44. doi: 10.1016/j.febslet.2008.12.028Open DOISearch in Google Scholar
Abrami L, Brandi L, Moayeri M, Brown MJ, Krantz BA, Leppla SH, van der Goot FG. Hijacking multivesicular bodies enables long-term and exosome-mediated long-distance action of anthrax toxin. Cell Rep 2013;5:986–96. doi: 10.1016/j.celrep.2013.10.019AbramiLBrandiLMoayeriMBrownMJKrantzBALepplaSHvan der GootFG.Hijacking multivesicular bodies enables long-term and exosome-mediated long-distance action of anthrax toxin. Cell Rep2013;5:986–96. doi: 10.1016/j.celrep.2013.10.019Open DOISearch in Google Scholar
Shimoda A, Ueda K, Nishiumi S, Murata-Kamiya N, Mukai SA, Sawada S, Azuma T, Hatakeyama M, Akiyoshi K. Exosomes as nanocarriers for systemic delivery of the Helicobacter pylori virulence factor CagA. Sci Rep 2016;6:18346. doi: 10.1038/srep18346ShimodaAUedaKNishiumiSMurata-KamiyaNMukaiSASawadaSAzumaTHatakeyamaMAkiyoshiK.Exosomes as nanocarriers for systemic delivery of the Helicobacter pylori virulence factor CagA. Sci Rep2016;6:18346. doi: 10.1038/srep18346Open DOISearch in Google Scholar
Singh PP, Maire CL, Tan JC, Zeng E, Schorey JS. Exosomes released from M. tuberculosis infected cells can suppress IFN-γ mediated activation of naïve macrophage. PLoS One 2011:6(4):e18564. doi: 10.1371/journal.pone.0018564SinghPPMaireCLTanJCZengESchoreyJS.Exosomes released from M. tuberculosis infected cells can suppress IFN-γ mediated activation of naïve macrophage. PLoS One2011:6(4):e18564. doi: 10.1371/journal.pone.0018564Open DOISearch in Google Scholar
Letsiou E, Teixeira Alves LG, Felten M, Mitchell TJ, Muller-Redetzky HC, Hocke AC, Witzenrath M. Neutrophil-derived extracellular vesicles activate platelets after pneumolysin exposure. Cells 2021;10:3581. doi: 10.1038/s41598-021-88897-yLetsiouETeixeira AlvesLGFeltenMMitchellTJMuller-RedetzkyHCHockeACWitzenrathM.Neutrophil-derived extracellular vesicles activate platelets after pneumolysin exposure. Cells2021;10:3581. doi: 10.1038/s41598-021-88897-yOpen DOISearch in Google Scholar
Koeppen K, Nymon A, Barnaby R, Bashor L, Li Z, Hampton TH, Liefeld AE, Kolling FW, LaCroix IS, Gerber SA, Hogan DA, Kasetty S, Nadell CD, Stanton BA. Let-7b-5p in vesicles secreted by human airway cells reduces biofilm formation and increases antibiotic sensitivity of P. aeruginosa. Proc Natl Acad Sci USA 2021;118(28):e2105370118. doi: 10.1073/pnas.2105370118KoeppenKNymonABarnabyRBashorLLiZHamptonTHLiefeldAEKollingFWLaCroixISGerberSAHoganDAKasettySNadellCDStantonBA.Let-7b-5p in vesicles secreted by human airway cells reduces biofilm formation and increases antibiotic sensitivity of P. aeruginosa. Proc Natl Acad Sci USA2021;118(28):e2105370118. doi: 10.1073/pnas.2105370118Open DOISearch in Google Scholar
Jung AL, Herkt CE, Schulz C, Bolte K, Seidel K, Scheller N, Sittka-Stark A, Bertrams W, Schmeck B. Legionella pneumophila infection activates bystander cells differentially by bacterial and host cell vesicles. Sci Rep 2017;7:6301. doi: 10.1038/s41598-017-06443-1JungALHerktCESchulzCBolteKSeidelKSchellerNSittka-StarkABertramsWSchmeckB.Legionella pneumophila infection activates bystander cells differentially by bacterial and host cell vesicles. Sci Rep2017;7:6301. doi: 10.1038/s41598-017-06443-1Open DOISearch in Google Scholar
Wells WA. When is a virus an exosome? J Cell Biol 2003;162(6):960. doi: 10.1083/jcb1626rr1WellsWA.When is a virus an exosome?J Cell Biol2003;162(6):960. doi: 10.1083/jcb1626rr1Open DOISearch in Google Scholar
Barclay RA, Schwab A, DeMarino C, Akpamagbo Y, Lepene B, Kassaye S, Iordanskiy S, Kashanchi F. Exosomes from uninfected cells activate transcription of latent HIV-1. J Biol Chem 2017;292:11682–701. doi: 10.1074/jbc.M117.793521BarclayRASchwabADeMarinoCAkpamagboYLepeneBKassayeSIordanskiySKashanchiF.Exosomes from uninfected cells activate transcription of latent HIV-1. J Biol Chem2017;292:11682–701. doi: 10.1074/jbc.M117.793521Open DOISearch in Google Scholar
Saad MH, Badierah R, Redwan EM, Fakharany EM. A comprehensive insight into the role of exosomes in viral infection: dual faces bearing different functions. Pharmaceutics 2021;13(9):1405. doi: 10.3390/pharmaceutics13091405SaadMHBadierahRRedwanEMFakharanyEM.A comprehensive insight into the role of exosomes in viral infection: dual faces bearing different functions. Pharmaceutics2021;13(9):1405. doi: 10.3390/pharmaceutics13091405Open DOISearch in Google Scholar
Jaworski E, Narayanan A, Van Duyne R, Shabbeer-Meyering S, Iordanskiy S, Saifuddin M, Das R, Afonso PV, Sampey GC, Chung M, Popratiloff A, Shrestha B, Sehgal M, Jain P, Vertes A, Mahieux R, Kashanchi F. Human T-lymphotropic virus type 1-infected cells secrete exosomes that contain Tax protein. J Biol Chem 2014;289:22284–305. doi: 10.1074/jbc.M114.549659JaworskiENarayananAVan DuyneRShabbeer-MeyeringSIordanskiySSaifuddinMDasRAfonsoPVSampeyGCChungMPopratiloffAShresthaBSehgalMJainPVertesAMahieuxRKashanchiF.Human T-lymphotropic virus type 1-infected cells secrete exosomes that contain Tax protein. J Biol Chem2014;289:22284–305. doi: 10.1074/jbc.M114.549659Open DOISearch in Google Scholar
Mori Y, Koike M, Moriishi E, Kawabata A, Tang H, Oyaizu H, Uchiyama Y, Yamanishi K. Human herpesvirus-6 induces MVB formation, and virus egress occurs by an exosomal release pathway. Traffic 2008;9:1728–42. doi: 10.1111/j.1600-0854.2008.00796.xMoriYKoikeMMoriishiEKawabataATangHOyaizuHUchiyamaYYamanishiK.Human herpesvirus-6 induces MVB formation, and virus egress occurs by an exosomal release pathway. Traffic2008;9:1728–42. doi: 10.1111/j.1600-0854. 2008.00796.xOpen DOISearch in Google Scholar
Anderson MR, Kashanchi F, Jacobson S. Exosomes in viral disease. Neurotherapeutics 2016;13:535–46. doi: 10.1007/s13311-016-0450-6AndersonMRKashanchiFJacobsonS.Exosomes in viral disease. Neurotherapeutics2016;13:535–46. doi: 10.1007/s13311-016-0450-6Open DOISearch in Google Scholar
Liu S, Hossinger A, Hofmann JP, Denner P, Vorberg IM. Horizontal transmission of cytosolic Sup35 prions by extracellular vesicles. mBio 2016;7(4):e915–6. doi: 10.1128/mBio.00915-16LiuSHossingerAHofmannJPDennerPVorbergIM.Horizontal transmission of cytosolic Sup35 prions by extracellular vesicles. mBio2016;7(4):e915–6. doi: 10.1128/mBio.00915-16Open DOISearch in Google Scholar
Peng Y, Yang Y, Li Y, Shi T, Luan Y, Yin C. Exosome and virus infection. Front Immunol 2023;14:1154217. doi: 10.3389/fimmu.2023.1154217PengYYangYLiYShiTLuanYYinC.Exosome and virus infection. Front Immunol2023;14:1154217. doi: 10.3389/fimmu.2023.1154217Open DOISearch in Google Scholar
Hu Z, Chen G, Zhao Y, Gao H, Li L, Yin Y, Jiang J, Wang L, Mang Y, Gao Y, Zhang S, Ran J, Li L. Exosome-derived circCCAR1 promotes CD8 + T-cell dysfunction and anti-PD1 resistance in hepatocellular carcinoma. Mol Cancer 2023;22(1):55. doi: 10.1186/s12943-023-01759-1HuZChenGZhaoYGaoHLiLYinYJiangJWangLMangYGaoYZhangSRanJLiL.Exosome-derived circCCAR1 promotes CD8 + T-cell dysfunction and anti-PD1 resistance in hepatocellular carcinoma. Mol Cancer2023;22(1):55. doi: 10.1186/s12943-023-01759-1Open DOISearch in Google Scholar
Li P, Chen J, Chen Y, Song S, Huang X, Yang Y, Li Y, Tong Y, Xie Y, Li J, Li S, Wang J, Qian K, Wang C, Du L. Construction of exosome SORL1 detection platform based on 3D porous microfuidic chip and its application in early diagnosis of colorectal cancer. Small 2023;19(20):e2207381. doi: 10.1002/smll.202207381LiPChenJChenYSongSHuangXYangYLiYTongYXieYLiJLiSWangJQianKWangCDuL.Construction of exosome SORL1 detection platform based on 3D porous microfuidic chip and its application in early diagnosis of colorectal cancer. Small2023;19(20):e2207381. doi: 10.1002/smll.202207381Open DOISearch in Google Scholar
Yu Z, Yang Y, Fang W, Hu P, Liu Y, Shi J. Dual tumor exosome biomarker co-recognitions Based nanoliquid biopsy for the accurate early diagnosis of pancreatic cancer. ACS Nano 2023;17:11384–95. doi: 10.1021/acsnano.3c00674YuZYangYFangWHuPLiuYShiJ.Dual tumor exosome biomarker co-recognitions Based nanoliquid biopsy for the accurate early diagnosis of pancreatic cancer. ACS Nano2023;17:11384–95. doi: 10.1021/acsnano.3c00674Open DOISearch in Google Scholar
Wang X, Wang HK, Li Y, Hafner M, Banerje NS, Tang S, Briskin D, Meyers C, Chow LT, Xie X, Tuschl T, Zheng ZM. microRNAs are biomarkers of oncogenic human papillomavirus infections. Proc Natl Acad Sci USA 2014;111:4262–7. doi: 10.1073/pnas.1401430111WangXWangHKLiYHafnerMBanerjeNSTangSBriskinDMeyersCChowLTXieXTuschlTZhengZM.microRNAs are biomarkers of oncogenic human papillomavirus infections. Proc Natl Acad Sci USA2014;111:4262–7. doi: 10.1073/pnas.1401430111Open DOISearch in Google Scholar
Xiao W, Huang Q, Luo P, Tan X, Xia H, Wang S, Sun Y, Wang Z, Ma Y, Zhang J, Jin Y. Lipid metabolism of plasma derived small extracellular vesicles in COVID 19 convalescent patients. Sci Rep 2023;13(1):16642. doi: 10.1038/s41598-023-43189-5XiaoWHuangQLuoPTanXXiaHWangSSunYWangZMaYZhangJJinY.Lipid metabolism of plasma derived small extracellular vesicles in COVID 19 convalescent patients. Sci Rep2023;13(1):16642. doi: 10.1038/s41598-023-43189-5Open DOISearch in Google Scholar
Marcilla A, Martin-Jaular L, Trelis M, de Menezes-Neto A, Osuna A, Bernal D, Fernandez-Becerra C, Almeida IC, Del Portillo HA. Extracellular vesicles in parasitic diseases. J Extracell Vesicles 2014;3(1):25040. doi: 10.3402/jev.v3.25040MarcillaAMartin-JaularLTrelisMde Menezes-NetoAOsunaABernalDFernandez-BecerraCAlmeidaICDel PortilloHA.Extracellular vesicles in parasitic diseases. J Extracell Vesicles2014;3(1):25040. doi: 10.3402/jev.v3.25040Open DOISearch in Google Scholar
Cox FEG. History of human parasitology. Clin Microbiol Rev 2002;15:595–612. doi: 10.1128/cmr.15.4.595-612.2002CoxFEG.History of human parasitology. Clin Microbiol Rev2002;15:595–612. doi: 10.1128/cmr.15.4.595-612.2002Open DOISearch in Google Scholar
Twu O, Johnson PJ. Parasite extracellular vesicles: mediators of intercellular communication. PLoS Pathog 2014;10:e1004289. doi: 10.1371/journal.ppat.1004289TwuOJohnsonPJ.Parasite extracellular vesicles: mediators of intercellular communication. PLoS Pathog2014;10:e1004289. doi: 10.1371/journal.ppat.1004289Open DOISearch in Google Scholar
Wu Z, Wang L, Li J, Wang L, Wu Z, Sun X. Extracellular vesiclemediated communication within host-parasite interactions. Front Immunol 2019;9:2018. doi: 10.3389/fimmu.2018.03066WuZWangLLiJWangLWuZSunX.Extracellular vesicle-mediated communication within host-parasite interactions. Front Immunol2019;9:2018. doi: 10.3389/fimmu.2018.03066Open DOISearch in Google Scholar
Yuan Y, Zhao J, Chen M, Liang H, Long X, Zhang B, Chen X, Chen Q. Understanding the pathophysiology of exosomes in Schistosomiasis: A new direction for disease control and prevention. Front Immunol 2021;20:634138. doi: 10.3389/fimmu.2021.634138YuanYZhaoJChenMLiangHLongXZhangBChenXChenQ.Understanding the pathophysiology of exosomes in Schistosomiasis: A new direction for disease control and prevention. Front Immunol2021;20:634138. doi: 10.3389/fimmu.2021.634138Open DOISearch in Google Scholar
Szempruch AJ, Sykes SE, Kieft R, Dennison L, Becker AC, Gartrell A, Martin WJ, Nakayasu ES, Almeida IC, Hajduk SL, Harrington JM. Extracellular vesicles from Trypanosoma brucei mediate virulence factor transfer and cause host anemia. Cell 2016;164:246–57. doi: 10.1016/j.cell.2015.11.051SzempruchAJSykesSEKieftRDennisonLBeckerACGartrellAMartinWJNakayasuESAlmeidaICHajdukSLHarringtonJM.Extracellular vesicles from Trypanosoma brucei mediate virulence factor transfer and cause host anemia. Cell2016;164:246–57. doi: 10.1016/j. cell.2015.11.051Open DOISearch in Google Scholar
Repiska G, Crescitelli R, Lunavat TR, Soekmadji C, Cho WC. Editorial: The role of extracellular vesicles in diseases: Shedding light on their role in cell-to-cell communication. Front Genet 2023;14:1123822. doi: 10.3389/fgene.2023.1123822RepiskaGCrescitelliRLunavatTRSoekmadjiCChoWC.Editorial: The role of extracellular vesicles in diseases: Shedding light on their role in cell-to-cell communication. Front Genet2023;14:1123822. doi: 10.3389/fgene.2023.1123822Open DOISearch in Google Scholar
Mantel PY, Marti M. The role of extracellular vesicles in Plasmodium and other protozoan parasites. Cell Microbiol 2014;16:344–54. doi: 10.1111/cmi.12259MantelPYMartiM.The role of extracellular vesicles in Plasmodium and other protozoan parasites. Cell Microbiol2014;16:344–54. doi: 10.1111/cmi.12259Open DOISearch in Google Scholar
Coakley G, McCaskill JL, Borger JG, Simbari F, Robertson E, Millar M, Harcus Y, McSorley HJ, Maizels RM, Buck AH. Extracellular vesicles from a helminth parasite suppress macrophage activation and constitute an effective vaccine for protective immunity. Cell Reports 2017;19:1545–57. doi: 10.1016/j.celrep.2017.05.001CoakleyGMcCaskillJLBorgerJGSimbariFRobertsonEMillarMHarcusYMcSorleyHJMaizelsRMBuckAH.Extracellular vesicles from a helminth parasite suppress macrophage activation and constitute an effective vaccine for protective immunity. Cell Reports2017;19:1545–57. doi: 10.1016/j.celrep.2017.05.001Open DOISearch in Google Scholar
Drurey C, Maizels RM. Helminth extracellular vesicles: Interactions with the host immune system. Mol Immunol 2021;137:124–33. doi: 10.1016/j.molimm.2021.06.017DrureyCMaizelsRM.Helminth extracellular vesicles: Interactions with the host immune system. Mol Immunol2021;137:124–33. doi: 10.1016/j.molimm.2021.06.017Open DOISearch in Google Scholar
Silverman JM, Clos J, Horakova E, Wang AY, Wiesgigl M, Kelly I, Lynn MA, McMaster WR, Foster LJ, Levings MK, Reiner NE. Leishmania exosomes modulate innate and adaptive immune responses through effects on monocytes and dendritic cells. J Immunol 2010;185:5011–22. doi: 10.4049/jimmunol.1000541SilvermanJMClosJHorakovaEWangAYWiesgiglMKellyILynnMAMcMasterWRFosterLJLevingsMKReinerNE.Leishmania exosomes modulate innate and adaptive immune responses through effects on monocytes and dendritic cells. J Immunol2010;185:5011–22. doi: 10.4049/jimmunol.1000541Open DOISearch in Google Scholar
Wu X, Showiheen SAA, Sun AR, Crawford R, Xiao Y, Mao X, Prasadam I. Exosomes extraction and identification. Methods Molec Biol 2019;2054:81–91. doi: 10.1007/978-1-4939-9769-5_4WuXShowiheenSAASunARCrawfordRXiaoYMaoXPrasadamI.Exosomes extraction and identification. Methods Molec Biol2019;2054:81–91. doi: 10.1007/978-1-4939-9769-5_4Open DOISearch in Google Scholar
Zanetti C, Gallina A, Fabbri A, Parisi S, Palermo A, Fecchi K, Boussadia Z, Carollo M, Falchi M, Pasquini L, Fiani ML, Sargiacomo M. Cell propagation of cholera toxin CTA ADP-ribosylating factor by exosome mediated transfer. Int J Mol Sci 2018;19(5):1521. doi: 10.3390/ijms19051521ZanettiCGallinaAFabbriAParisiSPalermoAFecchiKBoussadiaZCarolloMFalchiMPasquiniLFianiMLSargiacomoM.Cell propagation of cholera toxin CTA ADP-ribosylating factor by exosome mediated transfer. Int J Mol Sci2018;19(5):1521. doi: 10.3390/ijms19051521Open DOISearch in Google Scholar
Li B, Cao Y, Sun M, Feng H. Expression, regulation, and function of exosome-derived miRNAs in cancer progression and therapy. FASEB J 2021;35:e21916. doi: 10.1096/fj.202100294RRLiBCaoYSunMFengH.Expression, regulation, and function of exosome-derived miRNAs in cancer progression and therapy. FASEB J2021;35:e21916. doi: 10.1096/fj.202100294RROpen DOISearch in Google Scholar
Jerschke E, Barkovsky M, Jung N, Neuberger H, Stenzel J, Eyer F, Skerra A, Geith S. In vivo neutralization of colchicine toxicity by a PASylated anticalin in a rat model. Toxicology 2023;492:153526. doi: 10.1016/j.tox.2023.153526JerschkeEBarkovskyMJungNNeubergerHStenzelJEyerFSkerraAGeithS.In vivo neutralization of colchicine toxicity by a PASylated anticalin in a rat model. Toxicology2023;492:153526. doi: 10.1016/j.tox.2023.153526Open DOISearch in Google Scholar
Möller N, Ziesemer S, Hentschker C, Völker U, Hildebrandt J-P. Major determinants of airway epithelial cell sensitivity to S. aureus alpha-toxin: disposal of toxin heptamers by extracellular vesicle formation and lysosomal degradation. Toxins (Basel) 2021;13:173. doi: 10.3390/toxins13030173MöllerNZiesemerSHentschkerCVölkerUHildebrandtJ-P.Major determinants of airway epithelial cell sensitivity to S. aureus alpha-toxin: disposal of toxin heptamers by extracellular vesicle formation and lysosomal degradation. Toxins (Basel)2021;13:173. doi: 10.3390/toxins13030173Open DOISearch in Google Scholar
Eckhardt CM, Baccarelli AA, Wu H. Environmental exposures and extracellular vesicles: indicators of systemic effects and human disease. Curr Environ Health Rep 2022;9:465–76. doi: 10.1007/s40572-022-00357-5EckhardtCMBaccarelliAAWuH.Environmental exposures and extracellular vesicles: indicators of systemic effects and human disease. Curr Environ Health Rep2022;9:465–76. doi: 10.1007/s40572-022-00357-5Open DOISearch in Google Scholar
Rokad D, Jin H, Anantharam V, Kanthasamy A, Kanthasamy AG. Exosomes as mediators of chemical-induced toxicity. Curr Environ Health Rep 2019;6:73-9. doi: 10.1007/s40572-019-00233-9RokadDJinHAnantharamVKanthasamyAKanthasamyAG.Exosomes as mediators of chemical-induced toxicity. Curr Environ Health Rep2019;6:73–9. doi: 10.1007/s40572-019-00233-9Open DOISearch in Google Scholar
Harischandra DS, Ghaisas S, Rokad D, Kanthasamy AG. Exosomes in toxicology: relevance to chemical exposure and pathogenesis of environmentally linked diseases. Toxicol Sci 2017;158:3–13. doi: 10.1093/toxsci/kfx074HarischandraDSGhaisasSRokadDKanthasamyAG.Exosomes in toxicology: relevance to chemical exposure and pathogenesis of environmentally linked diseases. Toxicol Sci2017;158:3–13. doi: 10.1093/toxsci/kfx074Open DOISearch in Google Scholar
Challagundla KB, Fanini F, Vannini I, Wise P, Murtadha M, Malinconico L, Cimmino A, Fabbri M. microRNAs in the tumor microenvironment: Solving the riddle for a better diagnostics. Expert Rev Mol Diagn 2014;14:565–74. doi: 10.1586/14737159.2014.922879ChallagundlaKBFaniniFVanniniIWisePMurtadhaMMalinconicoLCimminoAFabbriM.microRNAs in the tumor microenvironment: Solving the riddle for a better diagnostics. Expert Rev Mol Diagn2014;14:565–74. doi: 10.1586/14737159.2014.922879Open DOISearch in Google Scholar
Massagué J. TGFbeta in cancer. Cell 2008;134:215–30. doi: 10.1016/j.cell.2008.07.001MassaguéJ.TGFbeta in cancer. Cell2008;134:215–30. doi: 10.1016/j.cell.2008.07.001Open DOISearch in Google Scholar
Li B, Ren S, Li X, Wang Y, Garfield D, Zhou S, Chen X, Su C, Chen M, Kuang P, Gao G, He Y, Fan L, Fei K, Zhou C, Schmit-Bindert G. MiR-21 overexpression is associated with acquired resistance of EGFR-TKI in nonsmall cell lung cancer. Lung Cancer 2014;83:146– 53. doi: 10.1016/j.lungcan.2013.11.003LiBRenSLiXWangYGarfieldDZhouSChenXSuCChenMKuangPGaoGHeYFanLFeiKZhouCSchmit-BindertG.MiR-21 overexpression is associated with acquired resistance of EGFR-TKI in nonsmall cell lung cancer. Lung Cancer2014;83:146–53. doi: 10.1016/j.lungcan.2013.11.003Open DOISearch in Google Scholar
Sun H, Sun R, Song X, Gu W, Shao Y. Mechanism and clinical value of exosomes and exosomal contents in regulating solid tumor radiosensitivity. J Transl Med 2022;20:189. doi: 10.1186/s12967-022-03392-wSunHSunRSongXGuWShaoY.Mechanism and clinical value of exosomes and exosomal contents in regulating solid tumor radiosensitivity. J Transl Med2022;20:189. doi: 10.1186/s12967-022-03392-wOpen DOISearch in Google Scholar
Dai S, Wen Y, Luo P, Ma L, Liu Y, Ai J, Shi C. Therapeutic implications of exosomes in the treatment of radiation injury. Burns Trauma 2022;10:tkab043. doi: 10.1093/burnst/tkab043DaiSWenYLuoPMaLLiuYAiJShiC.Therapeutic implications of exosomes in the treatment of radiation injury. Burns Trauma2022;10:tkab043. doi: 10.1093/burnst/tkab043Open DOISearch in Google Scholar
Kadhim M, Cagatay ST, Elbakrawy EM. Non-targeted effects of radiation: a personal perspective on the role of exosomes in an evolving paradigm. Int J Radiat Biol 2022;98:410-20. doi: 10.1080/09553002.2021.1980630KadhimMCagataySTElbakrawyEM.Non-targeted effects of radiation: a personal perspective on the role of exosomes in an evolving paradigm. Int J Radiat Biol2022;98:410–20. doi: 10.1080/09553002.2021.1980630Open DOISearch in Google Scholar
Li S, Shao L, Xu T, Jiang X, Yang G, Dong L. An indispensable tool: Exosomes play a role in therapy for radiation damage. Biomed Pharmacother 2021;137:111401. doi: 10.1016/j.biopha.2021.111401LiSShaoLXuTJiangXYangGDongL.An indispensable tool: Exosomes play a role in therapy for radiation damage. Biomed Pharmacother2021;137:111401. doi: 10.1016/j.biopha.2021.111401Open DOISearch in Google Scholar
Ni J, Bucci J, Malouf D, Knox M, Graham P, Li Y. Exosomes in cancer radioresistance. Front Oncol 2019;9:869. doi: 10.3389/fonc.2019.00869NiJBucciJMaloufDKnoxMGrahamPLiY.Exosomes in cancer radioresistance. Front Oncol2019;9:869. doi: 10.3389/fonc.2019.00869Open DOISearch in Google Scholar
Nakaoka A, Nakahana M, Inubushi S, Akasaka H, Salah M, Fujita Y, Kubota H, Hassan M, Nishikawa R, Mukumoto N, Ishihara T, Miyawaki D, Sasayama T, Sasaki R. Exosome-mediated radiosensitizing effect on neighboring cancer cells via increase in intracellular levels of reactive oxygen species. Oncol Rep 2021;45(4):13. doi: 10.3892/or.2021.7964NakaokaANakahanaMInubushiSAkasakaHSalahMFujitaYKubotaHHassanMNishikawaRMukumotoNIshiharaTMiyawakiDSasayamaTSasakiR.Exosome-mediated radiosensitizing effect on neighboring cancer cells via increase in intracellular levels of reactive oxygen species. Oncol Rep2021;45(4):13. doi: 10.3892/or.2021.7964Open DOISearch in Google Scholar
Yang Z, Zhong W, Yang L, Wen P, Luo Y, Wu C. The emerging role of exosomes in radiotherapy. Cell Commun Signal 2022;20(1):171. doi: 10.1186/s12964-022-00986-1YangZZhongWYangLWenPLuoYWuC.The emerging role of exosomes in radiotherapy. Cell Commun Signal2022;20(1):171. doi: 10.1186/s12964-022-00986-1Open DOISearch in Google Scholar
Jiang X, Jiang X, Qu C, Chang P, Zhang C, Qu Y, Liu Y. Intravenous delivery of adipose-derived mesenchymal stromal cells attenuates acute radiation-induced lung injury in rats. Cytotherapy 2015;17:560–70. doi: 10.1016/j.jcyt.2015.02.011JiangXJiangXQuCChangPZhangCQuYLiuY.Intravenous delivery of adipose-derived mesenchymal stromal cells attenuates acute radiation-induced lung injury in rats. Cytotherapy2015;17:560–70. doi: 10.1016/j.jcyt.2015.02.011Open DOISearch in Google Scholar
Bury MI, Fuller NJ, Wethekam L, Sharma AK. Bone marrow derived cells facilitate urinary bladder regeneration by attenuating tissue inflammatory responses. Cent European J Urol 2015;68:115–20. doi: 10.5173/ceju.2015.01.526BuryMIFullerNJWethekamLSharmaAK.Bone marrow derived cells facilitate urinary bladder regeneration by attenuating tissue inflammatory responses. Cent European J Urol2015;68:115–20. doi: 10.5173/ceju.2015.01.526Open DOISearch in Google Scholar
Sharma AK, Kumar YR, Shaw P, Kaloni A, Shukla SK. Exosomes: A new perspective for radiation combined injury as biomarker and therapeutics. Tissue Cell 2024;91:102563. doi: 10.1016/j.tice.2024.102563SharmaAKKumarYRShawPKaloniAShuklaSK.Exosomes: A new perspective for radiation combined injury as biomarker and therapeutics. Tissue Cell2024;91:102563. doi: 10.1016/j.tice.2024.102563Open DOISearch in Google Scholar
Tan F, Li X, Wang Z, Li J, Shahzd K, Zheng J. Clinical applications of stem cell-derived exosomes. Signal Transduct Target Ther 2024;9(1):17. doi: 10.1038/s41392-023-01704-0TanFLiXWangZLiJShahzdKZhengJ.Clinical applications of stem cell-derived exosomes. Signal Transduct Target Ther2024;9(1):17. doi: 10.1038/s41392-023-01704-0Open DOISearch in Google Scholar
Mukerjee N, Alharbi HM, Maitra S, Anand K, Thorat N, Gorai S. Exosomes in liquid biopsy and oncology: Nanotechnological interplay and the quest to overcome cancer drug resistance. J Liq Biopsy 2024;3:100134. doi: 10.1016/j.jlb.2023.100134MukerjeeNAlharbiHMMaitraSAnandKThoratNGoraiS.Exosomes in liquid biopsy and oncology: Nanotechnological interplay and the quest to overcome cancer drug resistance. J Liq Biopsy2024;3:100134. doi: 10.1016/j.jlb.2023.100134Open DOISearch in Google Scholar
Lin Y, Anderson JD, Rahnama LMA, Gu SV, Knowlton A. Exosomes in disease and regeneration: biological functions, diagnostics, and beneficial effects. Am J Physiol Heart Circ Physiol 2020;319:H1162– 80. doi: 10.1152/ajpheart.00075.2020LinYAndersonJDRahnamaLMAGuSVKnowltonA.Exosomes in disease and regeneration: biological functions, diagnostics, and beneficial effects. Am J Physiol Heart Circ Physiol2020;319:H1162–80. doi: 10.1152/ajpheart.00075.2020Open DOISearch in Google Scholar
Wang J, Sun X, Zhao J, Yang Y, Cai X, Xu J, Cao P. Exosomes: A novel strategy for treatment and prevention of diseases. Front Pharmacol 2017;8:300. doi: 10.3389/fphar.2017.00300WangJSunXZhaoJYangYCaiXXuJCaoP.Exosomes: A novel strategy for treatment and prevention of diseases. Front Pharmacol2017;8:300. doi: 10.3389/fphar.2017.00300Open DOISearch in Google Scholar