This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.
Podschun R, Ullmann U. Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin Microbiol Rev 1998;11:589–603. doi: 10.1128/CMR.11.4.589PodschunRUllmannU.Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin Microbiol Rev1998;11:589–603. doi: 10.1128/CMR.11.4.589Open DOISearch in Google Scholar
Vickery K, Deva A, Jacombs A, Allan J, Valente P, Gosbell IB. Presence of biofilm containing viable multiresistant organisms despite terminal cleaning on clinical surfaces in an intensive care unit. J Hosp Infect 2012;80:52–5. doi: 10.1016/j.jhin.2011.07.007VickeryKDevaAJacombsAAllanJValentePGosbellIB.Presence of biofilm containing viable multiresistant organisms despite terminal cleaning on clinical surfaces in an intensive care unit. J Hosp Infect2012;80:52–5. doi: 10.1016/j.jhin.2011.07.007Open DOISearch in Google Scholar
Paczosa MK, Mecsas J. Klebsiella pneumoniae: Going on the offense with a strong defense. Microbiol Mol Biol Rev 2016;80:629–61. doi: 10.1128/MMBR.00078-15PaczosaMKMecsasJ.Klebsiella pneumoniae: Going on the offense with a strong defense. Microbiol Mol Biol Rev2016;80:629–61. doi: 10.1128/MMBR.00078-15Open DOISearch in Google Scholar
Vickery K. Special issue: Microbial biofilms in healthcare: formation, prevention and treatment. Materials 2019;12(12):2001. doi: 10.3390/ma12122001VickeryK.Special issue: Microbial biofilms in healthcare: formation, prevention and treatment. Materials2019;12(12):2001. doi: 10.3390/ma12122001Open DOISearch in Google Scholar
Öztürk A, Güzel ÖT, Abdulmajed O, Erdoğan M, Kozan R, Çağlar K, Kalkanci A. Evaluation of the bactericidal activity of some disinfectant agents against Carbapenem -resistant Klebsiella pneumoniae isolates. Int J Environ Health Eng 2020;2020:1–6. doi: 10.4103/ijehe. ijehe_15_20ÖztürkAGüzelÖTAbdulmajedOErdoğanMKozanRÇağlarKKalkanciA.Evaluation of the bactericidal activity of some disinfectant agents against Carbapenem -resistant Klebsiella pneumoniae isolates. Int J Environ Health Eng2020;2020:1–6. doi: 10.4103/ijehe. ijehe_15_20Open DOISearch in Google Scholar
Elekhnawy EA, Sonbol FI, Elbanna TE, Abdelaziz AA. Evaluation of the impact of adaptation of Klebsiella pneumoniae clinical isolates to benzalkonium chloride on biofilm formation. Egypt J Med Hum Genet 2021;22:51. doi: 10.1186/s43042-021-00170-zElekhnawyEASonbolFIElbannaTEAbdelazizAA.Evaluation of the impact of adaptation of Klebsiella pneumoniae clinical isolates to benzalkonium chloride on biofilm formation. Egypt J Med Hum Genet2021;22:51. doi: 10.1186/s43042-021-00170-zOpen DOISearch in Google Scholar
Abuzaid A, Hamouda A, Amyes SGB. Klebsiella pneumoniae susceptibility to biocides and its association with cepA, qacΔE and qacE efflux pump genes and antibiotic resistance. J Hosp Infect 2012;81:87–91. doi: 10.1016/j.jhin.2012.03.003AbuzaidAHamoudaAAmyesSGB.Klebsiella pneumoniae susceptibility to biocides and its association with cepA, qacΔE and qacE efflux pump genes and antibiotic resistance. J Hosp Infect2012;81:87–91. doi: 10.1016/j.jhin.2012.03.003Open DOISearch in Google Scholar
Piletić K, Kovač B, Perčić M, Žigon J, Broznić D, Karleuša L, Lučić Blagojević S, Oder M, Gobin I. Disinfecting action of gaseous ozone on OXA-48-producing Klebsiella pneumoniae biofilm in vitro. Int J Environ Res Public Health 2022;19(10):6177. doi: 10.3390/ijerph19106177PiletićKKovačBPerčićMŽigonJBroznićDKarleušaLLučić BlagojevićSOderMGobinI.Disinfecting action of gaseous ozone on OXA-48-producing Klebsiella pneumoniae biofilm in vitro. Int J Environ Res Public Health2022;19(10):6177. doi: 10.3390/ijerph19106177Open DOISearch in Google Scholar
Vuotto C, Longo F, Pascolini C, Donelli G, Balice MP, Libori MF, Tiracchia V, Salvia A, Varaldo PE. Biofilm formation and antibiotic resistance in Klebsiella pneumoniae urinary strains. J Appl Microbiol 2017;123:1003–18. doi: 10.1111/jam.13533VuottoCLongoFPascoliniCDonelliGBaliceMPLiboriMFTiracchiaVSalviaAVaraldoPE.Biofilm formation and antibiotic resistance in Klebsiella pneumoniae urinary strains. J Appl Microbiol2017;123:1003–18. doi: 10.1111/jam.13533Open DOISearch in Google Scholar
Bridier A, Briandet R, Thomas V, Dubois-Brissonnet F. Resistance of bacterial biofilms to disinfectants: a review. Biofouling 2011;27:1017– 32. doi: 10.1080/08927014.2011.626899BridierABriandetRThomasVDubois-BrissonnetF.Resistance of bacterial biofilms to disinfectants: a review. Biofouling2011;27:1017–32. doi: 10.1080/08927014.2011.626899Open DOISearch in Google Scholar
Singla S, Harjai K, Chhibber S. Susceptibility of different phases of biofilm of Klebsiella pneumoniae to three different antibiotics. J Antibiot (Tokyo) 2013;66:61–6. doi: 10.1038/ja.2012.101SinglaSHarjaiKChhibberS.Susceptibility of different phases of biofilm of Klebsiella pneumoniae to three different antibiotics. J Antibiot (Tokyo)2013;66:61–6. doi: 10.1038/ja.2012.101Open DOISearch in Google Scholar
Chapman JS. Disinfectant resistance mechanisms, cross-resistance, and co-resistance. Int Biodeterior Biodegrad 2003;51:271–6. doi: 10.1016/S0964-8305(03)00044-1ChapmanJS.Disinfectant resistance mechanisms, cross-resistance, and co-resistance. Int Biodeterior Biodegrad2003;51:271–6. doi: 10.1016/S0964-8305(03)00044-1Open DOISearch in Google Scholar
Barber OW, Hartmann EM. Benzalkonium chloride: A systematic review of its environmental entry through wastewater treatment, potential impact, and mitigation strategies. Crit Rev Environ Sci Technol 2022;52:2691–719. doi: 10.1080/10643389.2021.1889284BarberOWHartmannEM.Benzalkonium chloride: A systematic review of its environmental entry through wastewater treatment, potential impact, and mitigation strategies. Crit Rev Environ Sci Technol2022;52:2691–719. doi: 10.1080/10643389.2021.1889284Open DOISearch in Google Scholar
Subhadra B, Kim DH, Woo K, Surendran S, Choi CH. Control of biofilm formation in healthcare: Recent advances exploiting quorumsensing interference strategies and multidrug efflux pump inhibitors. Materials 2018;11(9):1676. doi: 10.3390/ma11091676SubhadraBKimDHWooKSurendranSChoiCH.Control of biofilm formation in healthcare: Recent advances exploiting quorumsensing interference strategies and multidrug efflux pump inhibitors. Materials2018;11(9):1676. doi: 10.3390/ma11091676Open DOISearch in Google Scholar
Maillard JY, Centeleghe I. How biofilm changes our understanding of cleaning and disinfection. Antimicrob Resist Infect Control 2023;12(1):95. doi: 10.1186/s13756-023-01290-4MaillardJYCentelegheI.How biofilm changes our understanding of cleaning and disinfection. Antimicrob Resist Infect Control2023;12(1):95. doi: 10.1186/s13756-023-01290-4Open DOISearch in Google Scholar
Ni L, Zhang Z, Shen R, Liu X, Li X, Chen B, Wu X, Li H, Xie X, Huang S. Disinfection strategies for carbapenem-resistant Klebsiella pneumoniae in a healthcare facility. Antibiotics 2022;11(6):736. doi: 10.3390/antibiotics11060736NiLZhangZShenRLiuXLiXChenBWuXLiHXieXHuangS.Disinfection strategies for carbapenem-resistant Klebsiella pneumoniae in a healthcare facility. Antibiotics2022;11(6):736. doi: 10.3390/antibiotics11060736Open DOISearch in Google Scholar
Oleksy-Wawrzyniak M, Junka A, Brożyna M, Paweł M, Kwiek B, Nowak M, Mączyńska B, Bartoszewicz M. The in vitro ability of Klebsiella pneumoniae to form biofilm and the potential of various compounds to eradicate it from urinary catheters. Pathogens 2022;11(1):42. doi: 10.3390/pathogens11010042Oleksy-WawrzyniakMJunkaABrożynaMPawełMKwiekBNowakMMączyńskaBBartoszewiczM.The in vitro ability of Klebsiella pneumoniae to form biofilm and the potential of various compounds to eradicate it from urinary catheters. Pathogens2022;11(1):42. doi: 10.3390/pathogens11010042Open DOISearch in Google Scholar
Kim M, Weigand MR, Oh S, Hatt JK, Krishnan R, Tezel U, Pavlostathis SG, Konstantinidisa KT. Widely used benzalkonium chloride disinfectants can promote antibiotic resistance 2018;84(17):e01201–18. doi: 10.1128/AEM.01201-18KimMWeigandMROhSHattJKKrishnanRTezelUPavlostathisSGKonstantinidisaKT.Widely used benzalkonium chloride disinfectants can promote antibiotic resistance2018;84(17):e01201–18. doi: 10.1128/AEM.01201-18Open DOISearch in Google Scholar
Maillard JY, Bloomfield S, Coelho JR, Collier P, Cookson B, Fanning S, Hill A, Hartemann P, McBain AJ, Oggioni M, Sattar S, Schweizer HP, Threlfall J. Does microbicide use in consumer products promote antimicrobial resistance? A critical review and recommendations for a cohesive approach to risk assessment. Microb Drug Resist 2013;19:344–54. doi: 10.1089/mdr.2013.0039MaillardJYBloomfieldSCoelhoJRCollierPCooksonBFanningSHillAHartemannPMcBainAJOggioniMSattarSSchweizerHPThrelfallJ.Does microbicide use in consumer products promote antimicrobial resistance? A critical review and recommendations for a cohesive approach to risk assessment. Microb Drug Resist2013;19:344–54. doi: 10.1089/mdr.2013.0039Open DOISearch in Google Scholar
European Commission. Scientific Committee on Emerging and Newly-Identified Health Risks. Assessment of the Antibiotic Resistance Effects of Biocides, 2009 [displayed 5 December 2024]. January. Available at chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://ec.europa.eu/health/ph_risk/committees/04_scenihr/docs/scenihr_o_021.pdEuropean Commission. Scientific Committee on Emerging and Newly-Identified Health Risks. Assessment of the Antibiotic Resistance Effects of Biocides, 2009 [displayed 5 December 2024]. January. Available at chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://ec.europa.eu/health/ph_risk/committees/04_scenihr/docs/scenihr_o_021.pdfSearch in Google Scholar
Magiorakos AP, Burns K, Rodríguez Baño J, Borg M, Daikos G, Dumpis U, Lucet JC, Moro ML, Tacconelli E, Simonsen GS, Szilágyi E, Voss A, Weber JT. Infection prevention and control measures and tools for the prevention of entry of carbapenem-resistant Enterobacteriaceae into healthcare settings: Guidance from the European Centre for Disease Prevention and Control. Antimicrob Resist Infect Control 2017;6:113. doi: 10.1186/s13756-017-0259-zMagiorakosAPBurnsKRodríguez BañoJBorgMDaikosGDumpisULucetJCMoroMLTacconelliESimonsenGSSzilágyiEVossAWeberJT.Infection prevention and control measures and tools for the prevention of entry of carbapenem-resistant Enterobacteriaceae into healthcare settings: Guidance from the European Centre for Disease Prevention and Control. Antimicrob Resist Infect Control2017;6:113. doi: 10.1186/s13756-017-0259-zOpen DOISearch in Google Scholar
Abreu AC, Tavares RR, Borges A, Mergulhão F, Simões M. Current and emergent strategies for disinfection of hospital environments. J Antimicrob Chemother 2013;68:2718–32. doi: 10.1093/jac/dkt281AbreuACTavaresRRBorgesAMergulhãoFSimõesM.Current and emergent strategies for disinfection of hospital environments. J Antimicrob Chemother2013;68:2718–32. doi: 10.1093/jac/dkt281Open DOISearch in Google Scholar
Chang D, Sharma L, Dela Cruz CS, Zhang D. Clinical epidemiology, risk factors, and control strategies of Klebsiella pneumoniae infection. Front Microbiol 2021;12:750622. doi: 10.3389/fmicb.2021.750662ChangDSharmaLDela CruzCSZhangD.Clinical epidemiology, risk factors, and control strategies of Klebsiella pneumoniae infection. Front Microbiol2021;12:750622. doi: 10.3389/fmicb.2021.750662Open DOISearch in Google Scholar
Rutala WA, Weber DJ. Disinfection and sterilization in health care facilities. Infect Dis Clin North Am 2016;30:609–37. doi: 10.1016/j. idc.2016.04.002RutalaWAWeberDJ.Disinfection and sterilization in health care facilities. Infect Dis Clin North Am2016;30:609–37. doi: 10.1016/j. idc.2016.04.002Open DOISearch in Google Scholar
Rutala WA, Weber DJ, Healthcare Infection Control Practices Advisory Committee. Guideline for Disinfection and Sterilization in Healthcare Facilities. Centers for Disease Control and Prevention, 2008 [displayed 5 December 2024]. January. Available at chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.cdc.gov/infection-control/media/pdfs/guideline-disinfection-h.pdfRutalaWAWeberDJHealthcare Infection Control Practices Advisory Committee. Guideline for Disinfection and Sterilization in Healthcare Facilities. Centers for Disease Control and Prevention, 2008 [displayed 5 December 2024]. January. Available at chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.cdc.gov/infection-control/media/pdfs/guideline-disinfection-h.pdfSearch in Google Scholar
Damani N. Priručnik o prevenciji i kontroli infekcija [Infection prevention and control manual, in Croatian]. Zagreb: Medicinska naklada; 2019.DamaniN.Priručnik o prevenciji i kontroli infekcija [Infection prevention and control manual, in Croatian]. Zagreb: Medicinska naklada; 2019.Search in Google Scholar
Fontes B, Cattani Heimbecker AM, de Souza Brito G, Costa SF, van der Heijden IM, Levin AS, Rasslan S. Effect of low-dose gaseous ozone on pathogenic bacteria. BMC Infect Dis 2012;12:358. doi: 10.1186/1471-2334-12-358FontesBCattani HeimbeckerAMde Souza BritoGCostaSFvan der HeijdenIMLevinASRasslanS.Effect of low-dose gaseous ozone on pathogenic bacteria. BMC Infect Dis2012;12:358. doi: 10.1186/1471-2334-12-358Open DOISearch in Google Scholar
Megahed A, Aldridge B, Lowe J. The microbial killing capacity of aqueous and gaseous ozone on different surfaces contaminated with dairy cattle manure. PLoS One 2018;13(5):e0196555. doi: 10.1371/journal.pone.0196555MegahedAAldridgeBLoweJ.The microbial killing capacity of aqueous and gaseous ozone on different surfaces contaminated with dairy cattle manure. PLoS One2018;13(5):e0196555. doi: 10.1371/journal.pone.0196555Open DOISearch in Google Scholar
Giuliani G, Ricevuti G, Galoforo A, Franzini M. Microbiological aspects of ozone: bactericidal activity and antibiotic/antimicrobial resistance in bacterial strains treated with ozone. Ozone Ther 2018;3(3):7971. doi: 10.4081/ozone.2018.7971GiulianiGRicevutiGGaloforoAFranziniM.Microbiological aspects of ozone: bactericidal activity and antibiotic/antimicrobial resistance in bacterial strains treated with ozone. Ozone Ther2018;3(3):7971. doi: 10.4081/ozone.2018.7971Open DOISearch in Google Scholar
Sharma M, Hudson JB. Ozone gas is an effective and practical antibacterial agent. Am J Infect Control 2008;36:559–63. doi: 10.1016/j.ajic.2007.10.021SharmaMHudsonJB.Ozone gas is an effective and practical antibacterial agent. Am J Infect Control2008;36:559–63. doi: 10.1016/j.ajic.2007.10.021Open DOISearch in Google Scholar
Boch T, Tennert C, Vach K, Al-Ahmad A, Hellwig E, Polydorou O. Effect of gaseous ozone on Enterococcus faecalis biofilm -an in vitro study. Clin Oral Investig 2016;20:1733–9. doi: 10.1007/s00784-015-1667-1BochTTennertCVachKAl-AhmadAHellwigEPolydorouO.Effect of gaseous ozone on Enterococcus faecalis biofilm -an in vitro study. Clin Oral Investig2016;20:1733–9. doi: 10.1007/s00784-015-1667-1Open DOISearch in Google Scholar
Piletić K, Kovač B, Planinić M, Vasiljev V, Brčić Karačonji I, Žigon J, Gobin I, Oder M. Combined biocidal effect of gaseous ozone and citric acid on Acinetobacter baumannii biofilm formed on ceramic tiles and polystyrene as a novel approach for infection prevention and control. Processes 2022;10(9):1788. doi: 10.3390/pr10091788PiletićKKovačBPlaninićMVasiljevVBrčić KaračonjiIŽigonJGobinIOderM.Combined biocidal effect of gaseous ozone and citric acid on Acinetobacter baumannii biofilm formed on ceramic tiles and polystyrene as a novel approach for infection prevention and control. Processes2022;10(9):1788. doi: 10.3390/pr10091788Open DOISearch in Google Scholar
Kim HW, Lee NY, Park SM, Rhee MS. A fast and effective alternative to a high-ethanol disinfectant: Low concentrations of fermented ethanol, caprylic acid, and citric acid synergistically eradicate biofilm-embedded methicillin-resistant Staphylococcus aureus. Int J Hyg Environ Health 2020;229:113586. doi: 10.1016/j.ijheh.2020.113586KimHWLeeNYParkSMRheeMS.A fast and effective alternative to a high-ethanol disinfectant: Low concentrations of fermented ethanol, caprylic acid, and citric acid synergistically eradicate biofilm-embedded methicillin-resistant Staphylococcus aureus. Int J Hyg Environ Health2020;229:113586. doi: 10.1016/j.ijheh.2020.113586Open DOISearch in Google Scholar
Park KM, Yoon SG, Choi TH, Kim HJ, Park KJ, Koo M.The bactericidal effect of a combination of food grade compounds and their application as alternative antibacterial agent for food contact surfaces. Foods 2020;9(1):59. doi: 10.3390/foods9010059ParkKMYoonSGChoiTHKimHJParkKJKooM.The bactericidal effect of a combination of food grade compounds and their application as alternative antibacterial agent for food contact surfaces. Foods2020;9(1):59. doi: 10.3390/foods9010059Open DOISearch in Google Scholar
Reichel M, Schlicht A, Ostermeyer C, Kampf G. Efficacy of surface disinfectant cleaners against emerging highly resistant gram-negative bacteria. BMC Infect Dis 2014;14(1):292. doi: 10.1186/1471-2334-14-292ReichelMSchlichtAOstermeyerCKampfG.Efficacy of surface disinfectant cleaners against emerging highly resistant gram-negative bacteria. BMC Infect Dis2014;14(1):292. doi: 10.1186/1471-2334-14-292Open DOISearch in Google Scholar
Sundheim G, Langsrud S, Heir E, Holck AL. Bacterial resistance to disinfectants containing quaternary ammonium compounds. Int Biodeterior Biodegrad 1998;41:235–9. doi: 10.1016/S0964-8305(98)00027-4SundheimGLangsrudSHeirEHolckAL.Bacterial resistance to disinfectants containing quaternary ammonium compounds. Int Biodeterior Biodegrad1998;41:235–9. doi: 10.1016/S0964-8305(98)00027-4Open DOISearch in Google Scholar
Kampf G. Adaptive microbial response to low-level benzalkonium chloride exposure. J Hosp Infect 2018;100(3):e1–22. doi: 10.1016/j.jhin.2018.05.019KampfG.Adaptive microbial response to low-level benzalkonium chloride exposure. J Hosp Infect2018;100(3):e1–22. doi: 10.1016/j.jhin.2018.05.019Open DOISearch in Google Scholar
Cho G-L, Ha J-W. Synergistic effect of citric acid and xenon light for inactivating foodborne pathogens on spinach leaves. Food Res Int 2021;142:110210. doi: 10.1016/j.foodres.2021.110210ChoG-LHaJ-W.Synergistic effect of citric acid and xenon light for inactivating foodborne pathogens on spinach leaves. Food Res Int2021;142:110210. doi: 10.1016/j.foodres.2021.110210Open DOISearch in Google Scholar
Jung YJ, Oh BS, Kang J-W. Synergistic effect of sequential or combined use of ozone and UV radiation for the disinfection of Bacillus subtilis spores. Water Res 2008;42:1613–21. doi: 10.1016/j.watres.2007.10.008JungYJOhBSKangJ-W.Synergistic effect of sequential or combined use of ozone and UV radiation for the disinfection of Bacillus subtilis spores. Water Res2008;42:1613–21. doi: 10.1016/j.watres.2007.10.008Open DOISearch in Google Scholar
Britton HC, Draper M, Talmadge JE. Antimicrobial efficacy of aqueous ozone in combination with short chain fatty acid buffers. Infect Prev Pract 2020;2(1):100032. doi: 10.1016/j.infpip.2019.100032BrittonHCDraperMTalmadgeJE.Antimicrobial efficacy of aqueous ozone in combination with short chain fatty acid buffers. Infect Prev Pract2020;2(1):100032. doi: 10.1016/j.infpip.2019.100032Open DOISearch in Google Scholar
Vankerckhoven E, Verbessem B, Crauwels S, Declerck P, Muylaert K, Willems KA, Reiders H. Exploring the potential synergistic effects of chemical disinfectants and UV on the inactivation of free-living bacteria and treatment of biofilms in a pilot-scale system. Water Sci Technol 2011;64:1247–53. doi: 10.2166/wst.2011.718VankerckhovenEVerbessemBCrauwelsSDeclerckPMuylaertKWillemsKAReidersH.Exploring the potential synergistic effects of chemical disinfectants and UV on the inactivation of free-living bacteria and treatment of biofilms in a pilot-scale system. Water Sci Technol2011;64:1247–53. doi: 10.2166/wst.2011.718Open DOISearch in Google Scholar
Ha J-H, Jeong S-H, Ha S-D. Synergistic effects of combined disinfection using sanitizers and uv to reduce the levels of Staphylococcus aureus in oyster mushrooms. J Appl Biol Chem 2011;54:447–53. doi: 10.3839/jksabc.2011.069HaJ-HJeongS-HHaS-D.Synergistic effects of combined disinfection using sanitizers and uv to reduce the levels of Staphylococcus aureus in oyster mushrooms. J Appl Biol Chem2011;54:447–53. doi: 10.3839/jksabc.2011.069Open DOISearch in Google Scholar
European Committee for Standardization (CEN). EN 13727:2015. Chemical disinfectants. In: Quantitative suspension test for the Evaluation of Bactericidal Activity for Instruments Used in the Medical Area. Test Method and Requirements (Phase 2/Step 1). Brussels: CEN; 2015.European Committee for Standardization (CEN). EN 13727:2015. Chemical disinfectants. In: Quantitative suspension test for the Evaluation of Bactericidal Activity for Instruments Used in the Medical Area. Test Method and Requirements (Phase 2/Step 1). Brussels: CEN; 2015.Search in Google Scholar
Perla Filippini CR. Methicillin resistance, biofilm formation and resistance to benzalkonium chloride in Staphylococcus aureus clinical isolates. Clin Microbiol Open Access 2012;2(6):1000121. doi: 10.4172/2327-5073.1000121Perla FilippiniCR.Methicillin resistance, biofilm formation and resistance to benzalkonium chloride in Staphylococcus aureus clinical isolates. Clin Microbiol Open Access2012;2(6):1000121. doi: 10.4172/2327-5073.1000121Open DOISearch in Google Scholar
Bialoszewski D, Pietruczuk-Padzik A, Kalicinska A, Bocian E, Czajkowska M, Bukowska B, Tyski S. Activity of ozonated water and ozone against Staphylococcus aureus and Pseudomonas aeruginosa bioflms. Med Sci Monit 2011;17:BR339–44. doi: 10.12659/msm.882044BialoszewskiDPietruczuk-PadzikAKalicinskaABocianECzajkowskaMBukowskaBTyskiS.Activity of ozonated water and ozone against Staphylococcus aureus and Pseudomonas aeruginosa bioflms. Med Sci Monit2011;17:BR339–44. doi: 10.12659/msm.882044Open DOISearch in Google Scholar
Kovač B, Piletić K, Kovačević Ganić N, Gobin I. The effectiveness of benzalkonium chloride as an active compound on selected foodborne pathogens biofilm. Hygiene 2022;2:226–35. doi: 10.3390/hygiene2040020KovačBPiletićKKovačević GanićNGobinI.The effectiveness of benzalkonium chloride as an active compound on selected foodborne pathogens biofilm. Hygiene2022;2:226–35. doi: 10.3390/hygiene2040020Open DOISearch in Google Scholar
Nicholas R, Dunton P, Tatham A, Fielding L. The effect of ozone and open air factor on surface-attached and biofilm environmental Listeria monocytogenes. J Appl Microbiol 2013;115:555–64. doi: 10.1111/jam.12239NicholasRDuntonPTathamAFieldingL.The effect of ozone and open air factor on surface-attached and biofilm environmental Listeria monocytogenes. J Appl Microbiol2013;115:555–64. doi: 10.1111/jam.12239Open DOISearch in Google Scholar