Accesso libero

Whey protein protects liver mitochondrial function against oxidative stress in rats exposed to acrolein

INFORMAZIONI SU QUESTO ARTICOLO

Cita

Aydın B, Atlı Şekeroğlu Z, Şekeroğlu V. Effects of whey protein and conjugated linoleic acid on acrolein-induced cardiac oxidative stress, mitochondrial dysfunction and dyslipidemia in rats. Biomed Pharmacother 2018;107:901–7. doi: 10.1016/j.biopha.2018.08.081 Aydın B Atlı Şekeroğlu Z Şekeroğlu V Effects of whey protein and conjugated linoleic acid on acrolein-induced cardiac oxidative stress, mitochondrial dysfunction and dyslipidemia in rats Biomed Pharmacother 2018107901 7 10.1016/j.biopha.2018.08.08130257402Open DOISearch in Google Scholar

Aydın B, Atlı Şekeroğlu Z, Şekeroğlu V. Acrolein-induced oxidative stress and genotoxicity in rats: protective effects of whey protein and conjugated linoleic acid. Drug Chem Toxicol 2018;41:225–31. doi: 10.1080/01480545.2017.1354872 Aydın B Atlı Şekeroğlu Z Şekeroğlu V Acrolein-induced oxidative stress and genotoxicity in rats: protective effects of whey protein and conjugated linoleic acid Drug Chem Toxicol 201841225 31 10.1080/01480545.2017.135487228771065Open DOISearch in Google Scholar

Stevens JF, Maier CS. Acrolein: sources, metabolism, and biomolecular interactions relevant to human health and disease. Mol Nutr Food Res 2008;52:7–25. doi: 10.1002/mnfr.200700412 Stevens JF Maier CS Acrolein: sources, metabolism, and biomolecular interactions relevant to human health and disease Mol Nutr Food Res 2008527 25 10.1002/mnfr.200700412242334018203133Open DOISearch in Google Scholar

Moghe A, Ghane S, Lamoreav B, Mohammad M, Barve S, McClain C, Joshi-Barve S. Molecular mechanisms of acrolein toxicity: relevance to human disease. Toxicol Sci 2015;43:242–55. doi: 10.1093/toxsci/ kfu233 Moghe A Ghane S Lamoreav B Mohammad M Barve S McClain C Joshi-Barve S Molecular mechanisms of acrolein toxicity: relevance to human disease Toxicol Sci 201543242 55 10.1093/toxsci/kfu233430671925628402Open DOISearch in Google Scholar

Taghiabadi E, Imenshahidi M, Abnous K, Mosafa F, Sankian M, Memar B, Karimi G. Protective effect of silymarin against acrolein-induced cardiotoxicity in mice. Evid Based Complement Alternat Med 2012;2012:352091. doi: 10.1155/2012/352091 Taghiabadi E Imenshahidi M Abnous K Mosafa F Sankian M Memar B Karimi G Protective effect of silymarin against acrolein-induced cardiotoxicity in mice Evid Based Complement Alternat Med 20122012352091 10.1155/2012/352091353575923320028Open DOISearch in Google Scholar

Conklin DJ, Prough RA, Juvan P, Rezen T, Rozman D, Haberzettl P, Srivastava S, Bhatnagar A. Acrolein-induced dyslipidemia and acute-phase response are independent of HMG-CoA reductase. Mol Nutr Food Res 2011;55:1411–22. doi: 10.1002/mnfr.201100225 Conklin DJ Prough RA Juvan P Rezen T Rozman D Haberzettl P Srivastava S Bhatnagar A Acrolein-induced dyslipidemia and acute-phase response are independent of HMG-CoA reductase Mol Nutr Food Res 2011551411 22 10.1002/mnfr.201100225351708121812109Open DOISearch in Google Scholar

Luo J, Shi R. Acrolein induces oxidative stress in brain mitochondria. Neurochem Int 2004;46:243–52. doi: 10.1016/j.neuint.2004.09.001 Luo J Shi R Acrolein induces oxidative stress in brain mitochondria Neurochem Int 200446243 52 10.1016/j.neuint.2004.09.00115670641Open DOISearch in Google Scholar

Sun L, Luo C, Long J, Wei D, Liu J. Acrolein is a mitochondrial toxin: effects on respiratory function and enzyme activities in isolated rat liver mitochondria. Mitochondrion 2006;6:136–42. doi: 10.1016/j. mito.2006.04.003 Sun L Luo C Long J Wei D Liu J Acrolein is a mitochondrial toxin: effects on respiratory function and enzyme activities in isolated rat liver mitochondria Mitochondrion 20066136 42 10.1016/j.mito.2006.04.00316725382Open DOISearch in Google Scholar

Kerasioti E, Veskoukis A, Virgiliou C, Theodoridis G, Taitzoglou I, Kouretas D. The strong antioxidant sheep/goat whey protein protects against mTOR overactivation in rats: a mode of action mimicking fasting. Antioxidants 2019;8(3):71. doi: 10.3390/antiox8030071 Kerasioti E Veskoukis A Virgiliou C Theodoridis G Taitzoglou I Kouretas D The strong antioxidant sheep/goat whey protein protects against mTOR overactivation in rats: a mode of action mimicking fasting Antioxidants 20198371 10.3390/antiox8030071646653930909557Open DOISearch in Google Scholar

Peng X, Kong B, Xia X, Liu Q. Reducing and radical scavenging activities of whey protein hydrolysates prepared with Alcalase. Int Dairy J 2010;20:360–5. doi: 10.1016/j.idairyj.2009.11.019 Peng X Kong B Xia X Liu Q Reducing and radical scavenging activities of whey protein hydrolysates prepared with Alcalase Int Dairy J 201020360 5 10.1016/j.idairyj.2009.11.019Open DOISearch in Google Scholar

Kim J, Paik HD, Yoon YC, Park E. Whey protein inhibits iron overload-induced oxidative stress in rats. J Nutr Sci Vitaminol 2013;59:198–205. doi: 10.3177/jnsv.59.198 Kim J Paik HD Yoon YC Park E Whey protein inhibits iron overload-induced oxidative stress in rats J Nutr Sci Vitaminol 201359198 205 10.3177/jnsv.59.198Open DOISearch in Google Scholar

Liu O, Kong G, Han J, Sun C, Li P. Structure and antioxidant activity of whey protein isolate conjugated with glucose via the Maillard reaction under dry-heating conditions. Food Struct 2014;1:145–54. doi: 10.1016/j.foostr.2013.11.004 Liu O Kong G Han J Sun C Li P Structure and antioxidant activity of whey protein isolate conjugated with glucose via the Maillard reaction under dry-heating conditions Food Struct 20141145 54 10.1016/j.foostr.2013.11.004Open DOISearch in Google Scholar

Garg G, Singh AK, Singh S, Verma AK, Rizvi SI. Whey protein concentrate protects against age-dependent alteration in redox biomarkers. Biol Futur 2020;71:273–81. doi: 10.1007/s42977-020-00033-5 Garg G Singh AK Singh S Verma AK Rizvi SI Whey protein concentrate protects against age-dependent alteration in redox biomarkers Biol Futur 202071273 81 10.1007/s42977-020-00033-5Open DOISearch in Google Scholar

Kume H, Okazaki K, Takahashi T, Yamaji T. Protective effect of an immune- modulating diet comprising whey peptides and fermented milk products on indomethacin- induced small-bowel disorders in rats. Clin Nutr 2014;33:1140–6. doi: 10.1016/j.clnu.2013.12.014 Kume H Okazaki K Takahashi T Yamaji T Protective effect of an immune- modulating diet comprising whey peptides and fermented milk products on indomethacin- induced small-bowel disorders in rats Clin Nutr 2014331140 6 10.1016/j.clnu.2013.12.014Open DOISearch in Google Scholar

Er R, Aydın B, Şekeroğlu V, Atlı Şekeroğlu Z. Protective effect of Argan oil on mitochondrial function and oxidative stress against acrylamide-induced liver and kidney injury in rats. Biomarkers 2020;25:458–67. doi: 10.1080/1354750X.2020.1797877 Er R Aydın B Şekeroğlu V Atlı Şekeroğlu Z Protective effect of Argan oil on mitochondrial function and oxidative stress against acrylamide-induced liver and kidney injury in rats Biomarkers 202025458 67 10.1080/1354750X.2020.1797877Open DOISearch in Google Scholar

National Research Council. Guide for the Care and Use of Laboratory Animals. 8th ed. Washington (DC): The National Academies Press; 2011. National Research Council Guide for the Care and Use of Laboratory Animals. 8th ed Washington (DC) The National Academies Press; 2011Search in Google Scholar

Johnson D, Lardy H. Isolation of liver or kidney mitochondria. Methods Enzymol 1967;10:94–6. doi: 10.1016/0076-6879(67)10018-9 Johnson D Lardy H Isolation of liver or kidney mitochondria Methods Enzymol 19671094 6 10.1016/0076-6879(67)10018-9Open DOISearch in Google Scholar

Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the folin phenol reagent. J Biol Chem 1951;193:265–75. doi: 10.1016/S0021-9258(19)52451-6 Lowry OH Rosebrough NJ Farr AL Randall RJ Protein measurement with the folin phenol reagent J Biol Chem 1951193265 75 10.1016/S0021-9258(19)52451-6Open DOISearch in Google Scholar

Beauchamp C, Fridavich I. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 1971;44:276–87. doi: 10.1016/0003-2697(71)90370-8 Beauchamp C Fridavich I Superoxide dismutase: improved assays and an assay applicable to acrylamide gels Anal Biochem 197144276–87 10.1016/0003-2697(71)90370-8Open DOISearch in Google Scholar

Flohe L, Günzler WA. Assays of glutathione peroxidase. Methods Enzymol 1984;105:114–21. doi: 10.1016/s0076-6879(84)05015-1 Flohe L Günzler WA Assays of glutathione peroxidase Methods Enzymol 1984105114 21 10.1016/s0076-6879(84)05015-1Open DOISearch in Google Scholar

Moron MS, Depierre JW, Mannervik B. Levels of glutathione reductase and glutathione-S-transferase activities in rat lung and liver. Biochim Biophys Acta 1979;582:67–78. doi: 10.1016/0304-4165(79)90289-7 Moron MS Depierre JW Mannervik B Levels of glutathione reductase and glutathione-S-transferase activities in rat lung and liver Biochim Biophys Acta 197958267 78 10.1016/0304-4165(79)90289-7Open DOISearch in Google Scholar

Esterbauer H, Chessman KH. Determination of aldehydic lipid peroxidation products: malonaldehyde and 4-hydroxynonenal. Methods Enzymol 1990;186:407–21. doi: 10.1016/0076-6879(90)86134-h Esterbauer H Chessman KH Determination of aldehydic lipid peroxidation products: malonaldehyde and 4-hydroxynonenal Methods Enzymol 1990186407 21 10.1016/0076-6879(90)86134-hOpen DOISearch in Google Scholar

Levine RL, Garland D, Oliver CN, Amici A, Climent I, Lenz AG, Ahn BW, Shaltiel S, Stadtman ER. Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol 1990;186:464–78. doi: 10.1016/0076-6879(90)86141-h Levine RL Garland D Oliver CN Amici A Climent I Lenz AG Ahn BW Shaltiel S Stadtman ER Determination of carbonyl content in oxidatively modified proteins Methods Enzymol 1990186464 78 10.1016/0076-6879(90)86141-hOpen DOISearch in Google Scholar

Janssen AJ, Trijbels FJ, Sengers RC, Smeitink JA, van den Heuvel LP, Wintjes LT, Stoltenborg-Hogenkamp BJ, Rodenburg RJ. Spectrophotometric assay for complex I of the respiratory chain in tissue samples and cultured fibroblasts. Clin Chem 2007;53:729–34. doi: 10.1373/clinchem.2006.078873 Janssen AJ Trijbels FJ Sengers RC Smeitink JA van den Heuvel LP Wintjes LT Stoltenborg-Hogenkamp BJ Rodenburg RJ Spectrophotometric assay for complex I of the respiratory chain in tissue samples and cultured fibroblasts Clin Chem 200753729 34 10.1373/clinchem.2006.078873Open DOISearch in Google Scholar

Trounce IA, Kim YL, Jun AS, Wallace DC. Assessment of mitochondrial oxidative phosphorylation in patient muscle biopsies, lymphoblasts, and transmitochondrial cell lines. Methods Enzymol 1996;264:484-509. doi: 10.1016/s0076-6879(96)64044-0 Trounce IA Kim YL Jun AS Wallace DC Assessment of mitochondrial oxidative phosphorylation in patient muscle biopsies, lymphoblasts, and transmitochondrial cell lines Methods Enzymol 1996264484 509 10.1016/s0076-6879(96)64044-0Open DOISearch in Google Scholar

Fatania H, al-Nassar KE, Sidhan V. Purification and partial characterisation of NADP+-linked isocitrate dehydrogenase from rat liver cytosol. FEBS Lett 1993;320:57–60. doi: 10.1016/0014-5793(93)81657-l Fatania H al-Nassar KE Sidhan V Purification and partial characterisation of NADP+-linked isocitrate dehydrogenase from rat liver cytosol FEBS Lett 199332057 60 10.1016/0014-5793(93)81657-lOpen DOISearch in Google Scholar

Lucas DT, Aryal P, Szweda LI, Koch WJ, Leinwand LA. Alterations in mitochondrial function in a mouse model of hypertrophic cardiomyopathy. Am J Physiol Heart Circ Physiol 2003;284:H575–83. doi: 10.1152/ajpheart.00619.2002 Lucas DT Aryal P Szweda LI Koch WJ Leinwand LA Alterations in mitochondrial function in a mouse model of hypertrophic cardiomyopathy Am J Physiol Heart Circ Physiol 2003284H575 83 10.1152/ajpheart.00619.200212414446Open DOISearch in Google Scholar

Gelpi JL, Dordal A, Montserrat J, Mazo A, Cortés A. Kinetic studies of the regulation of mitochondrial malate dehydrogenase by citrate. Biochem J 1992;283(Pt 1):289–97. doi: 10.1042/bj2830289 Gelpi JL Dordal A Montserrat J Mazo A Cortés A Kinetic studies of the regulation of mitochondrial malate dehydrogenase by citrate Biochem J 1992283Pt 1289 97 10.1042/bj283028911310271567375Open DOISearch in Google Scholar

Degli Esposti D, Hamelin J, Bosselut N, Saffroy R, Sebagh M, Pommier A, Martel C, Lemoine A. Mitochondrial roles and cytoprotection in chronic liver injury. Biochem Res Int 2012;2012:387626: doi: 10.1155/2012/387626 Degli Esposti D Hamelin J Bosselut N Saffroy R Sebagh M Pommier A Martel C Lemoine A Mitochondrial roles and cytoprotection in chronic liver injury Biochem Res Int 20122012387626 10.1155/2012/387626338225322745910Open DOISearch in Google Scholar

Morio B, Panthu B, Bassot A, Rieusset J. Role of mitochondria in liver metabolic health and diseases. Cell Calcium 2021;94:102336. doi: 10.1016/j.ceca.2020.102336 Morio B Panthu B Bassot A Rieusset J Role of mitochondria in liver metabolic health and diseases Cell Calcium 202194102336 10.1016/j.ceca.2020.10233633387847Open DOISearch in Google Scholar

Kaminskas LM, Pyke SM, Burcham PC. Differences in lysine adduction by acrolein and methyl vinyl ketone: implications for cytotoxicity in cultured hepatocytes. Chem Res Toxicol 2005;18:1627–33. doi: 10.1021/tx0502387 Kaminskas LM Pyke SM Burcham PC Differences in lysine adduction by acrolein and methyl vinyl ketone: implications for cytotoxicity in cultured hepatocytes Chem Res Toxicol 2005181627–33 10.1021/tx050238716300370Open DOISearch in Google Scholar

Mohammad MK, Avila D, Zhang J, Barve S, Arteel G, McClain C, Joshi-Barve S. Acrolein cytotoxicity in hepatocytes involves endoplasmic reticulum stress, mitochondrial dysfunction and oxidative stress. Toxicol Appl Pharmacol 2012;265:73–82. doi: 10.1016/j. taap.2012.09.021 Mohammad MK Avila D Zhang J Barve S Arteel G McClain C Joshi-Barve S Acrolein cytotoxicity in hepatocytes involves endoplasmic reticulum stress, mitochondrial dysfunction and oxidative stress Toxicol Appl Pharmacol 201226573 82 10.1016/j.taap.2012.09.021350110423026831Open DOISearch in Google Scholar

Shafie B, Pourahmad J, Rezaei M. N-acetylcysteine is more effective than ellagic acid in preventing acrolein induced dysfunction in mitochondria isolated from rat liver. J Food Biochem 2021;45(7):e13775. doi: 10.1111/jfbc.13775 Shafie B Pourahmad J Rezaei M N-acetylcysteine is more effective than ellagic acid in preventing acrolein induced dysfunction in mitochondria isolated from rat liver J Food Biochem 2021457e13775 10.1111/jfbc.1377534080202Open DOISearch in Google Scholar

Mantena SK, King AL, Andringa KK, Ecclestdon HB, Bailey SM. Mitochondrial dysfunction and oxidative ioene in the pathogenensis of alcohol- and obesity-indiced fatty liver diseases. Free Radic Biol Med 2008;44:1259–72. doi: 10.1016/j.freeradbiomed.2007.12.029 Mantena SK King AL Andringa KK Ecclestdon HB Bailey SM Mitochondrial dysfunction and oxidative ioene in the pathogenensis of alcohol- and obesity-indiced fatty liver diseases Free Radic Biol Med 2008441259 72 10.1016/j.freeradbiomed.2007.12.029232391218242193Open DOISearch in Google Scholar

Şekeroğlu V, Aydın B, Atlı Şekeroğlu Z, Özdener Kömpe Y. Hepatoprotective effects of capsaicin and alpha-tocopherol on mitochondrial function in mice fed a high-fat diet. Biomed Pharmacother 2018;98:821–5. doi: 10.1016/j.biopha.2018.01.026 Şekeroğlu V Aydın B Atlı Şekeroğlu Z Özdener Kömpe Y Hepatoprotective effects of capsaicin and alpha-tocopherol on mitochondrial function in mice fed a high-fat diet Biomed Pharmacother 201898821 5 10.1016/j.biopha.2018.01.02629571252Open DOISearch in Google Scholar

Shertzer HG, Krishan M, Genter MB. Dietary whey protein stimulates mitochondrial activity and decreases oxidative stress in mouse female brain. Neurosci Lett 2013;548:159–64. doi: 10.1016/j. neulet.2013.05.061 Shertzer HG Krishan M Genter MB Dietary whey protein stimulates mitochondrial activity and decreases oxidative stress in mouse female brain Neurosci Lett 2013548159 64 10.1016/j.neulet.2013.05.061374987823748211Open DOISearch in Google Scholar

Jin MM, Zhang L, Yu HX, Meng J, Sun Z, Lu RR. Protective effect of whey protein hydrolysates on H2O2-induced PC12 cells oxidative stress via a mitochondria-mediated pathway. Food Chem 2013;141:847–52. doi: 10.1016/j.foodchem.2013.03.076 Jin MM Zhang L Yu HX Meng J Sun Z Lu RR Protective effect of whey protein hydrolysates on H2O2-induced PC12 cells oxidative stress via a mitochondria-mediated pathway Food Chem 2013141847–52 10.1016/j.foodchem.2013.03.07623790857Open DOISearch in Google Scholar

Tong X, Li W, Xu JY, Han S, Qin LQ. Effects of whey protein and leucine supplementation on insulin resistance in non-obese insulin-resistant model rats. Nutrition 2014;30:1076–80. doi: 10.1016/j. nut.2014.01.013 Tong X Li W Xu JY Han S Qin LQ Effects of whey protein and leucine supplementation on insulin resistance in non-obese insulin-resistant model rats Nutrition 2014301076 80 10.1016/j.nut.2014.01.01324976432Open DOISearch in Google Scholar

Mansour DF, Nada SA, El-Denshary ES, Omara EA, Asaad GF, Abdel-Rahman RF. Milk whey proteins modulate endotoxemia-induced hepatotoxicity in rats. Int J Pharm Pharm Sci 2015;7:65–71. Mansour DF Nada SA El-Denshary ES Omara EA Asaad GF Abdel-Rahman RF Milk whey proteins modulate endotoxemia-induced hepatotoxicity in rats Int J Pharm Pharm Sci 2015765 71Search in Google Scholar

Park E, Paik HD, Lee SM. Combined effects of whey protein hydrolysates and probiotics on oxidative stress induced by an iron-overloaded diet in rats. Int J Food Sci Nutr 2018;69:298–307. doi: 10.1080/09637486.2017.1354977 Park E Paik HD Lee SM Combined effects of whey protein hydrolysates and probiotics on oxidative stress induced by an iron-overloaded diet in rats Int J Food Sci Nutr 201869298 307 10.1080/09637486.2017.135497728738702Open DOISearch in Google Scholar

Chranthi M, Rao GM, Pandey R, Jalajakshi, Marathe A. Ameliorating effect of whey preparation on Na+ -K+ -ATPase and oxidative stress in chemotherapy induced rat model for brain toxicity. Biomedicine 2019;39:405–9. doi: 10.51248/.v39i3.156 Chranthi M Rao GM Pandey R Jalajakshi Marathe A Ameliorating effect of whey preparation on Na+ -K+ -ATPase and oxidative stress in chemotherapy induced rat model for brain toxicity Biomedicine 201939405 9 10.51248/.v39i3.156Open DOISearch in Google Scholar

Geng C, Xu H, Zhang Y, Gao Y, Li M, Liu X, Gao M, Wang X, Liu X, Fang F, Chang Y. Retinoic acid ameliorates high-fat diet-induced liver steatosis through sirt1. Sci China Life Sci 2017;60:1234–41. doi: 10.1007/s11427-016-9027-6 Geng C Xu H Zhang Y Gao Y Li M Liu X Gao M Wang X Liu X Fang F Chang Y Retinoic acid ameliorates high-fat diet-induced liver steatosis through sirt1 Sci China Life Sci 2017601234 41 10.1007/s11427-016-9027-628667519Open DOISearch in Google Scholar

Athira S, Mann B, Sharma R, Kumar R. Ameliorative potential of whey protein hydrolysate against paracetamol-induced oxidative stress. J Dairy Sci 2013;96:1431–7. doi: 10.3168/jds.2012-6080 Athira S Mann B Sharma R Kumar R Ameliorative potential of whey protein hydrolysate against paracetamol-induced oxidative stress J Dairy Sci 2013961431 7 10.3168/jds.2012-608023313001Open DOISearch in Google Scholar

Żebrowska-Gamdzyk M, Maciejczyk M, Zalewska A, Guzińska-Ustymowicz K, Tokajuk A, Car H. Whey protein concentrate WPC-80 intensifies glycoconjugate catabolism and induces oxidative stress in the liver of rats. Nutrients 2018;10(9):1178. doi: 10.3390/nu10091178 Żebrowska-Gamdzyk M Maciejczyk M Zalewska A Guzińska-Ustymowicz K Tokajuk A Car H Whey protein concentrate WPC-80 intensifies glycoconjugate catabolism and induces oxidative stress in the liver of rats Nutrients 20181091178 10.3390/nu10091178616485930154356Open DOISearch in Google Scholar

Derosa G, D’Angelo A, Maffioli P. Change of some oxidative stress parameters after supplementation with whey protein isolate in patients with type 2 diabetes. Nutrition 2020;73:110700. doi: 10.1016/j. nut.2019.110700 Derosa G D’Angelo A Maffioli P Change of some oxidative stress parameters after supplementation with whey protein isolate in patients with type 2 diabetes Nutrition 202073110700 10.1016/j.nut.2019.11070032065880Open DOISearch in Google Scholar

Mohandas G, Rao SV, Muralidhara, Rajini PS. Whey protein isolate enrichment attenuates manganese-induced oxidative stress and neurotoxicity in Drosophila melanogaster: Relevance to Parkinson’s disease. Biomed Pharmacother 2017;95:1596–606. doi: 10.1016/j. biopha.2017.09.099 Mohandas G Rao SV Muralidhara Rajini PS Whey protein isolate enrichment attenuates manganese-induced oxidative stress and neurotoxicity in Drosophila melanogaster: Relevance to Parkinson’s disease Biomed Pharmacother 2017951596 606 10.1016/j.biopha.2017.09.09928950660Open DOISearch in Google Scholar

Gad AS, Khadrawy YA, El-Nekeety AA, Mohamed SR, Hassan NS, Abdel-Wahhab MA. Antioxidant activity and hepatoprotective effects of whey protein and Spirulina in rats. Nutrition 2011;27:582–9. doi: 10.1016/j.nut.2010.04.002 Gad AS Khadrawy YA El-Nekeety AA Mohamed SR Hassan NS Abdel-Wahhab MA Antioxidant activity and hepatoprotective effects of whey protein and Spirulina in rats Nutrition 201127582 9 10.1016/j.nut.2010.04.00220708378Open DOISearch in Google Scholar

Lee JH, Yang ES, Park J-W. Inactivation of NADP+-dependent isocitrate dehydrogenase by peroxynitrite. Implications for cytotoxicity and alcohol-induced liver injury. J Biol Chem 2003;278:51360–71. doi: 10.1074/jbc.M302332200 Lee JH Yang ES Park J-W Inactivation of NADP+-dependent isocitrate dehydrogenase by peroxynitrite Implications for cytotoxicity and alcohol-induced liver injury. J Biol Chem 200327851360 71 10.1074/jbc.M30233220014551203Open DOISearch in Google Scholar

Nemoto S, Fergusson MM, Finkel T. SIRT1 functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1{alpha}. J Biol Chem 2005;280(16):16456–60. doi: 10.1074/jbc.M501485200 Nemoto S Fergusson MM Finkel T SIRT1 functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1{alpha} J Biol Chem 20052801616456 60 10.1074/jbc.M50148520015716268Open DOISearch in Google Scholar

Han SJ, Choi HS, Kim JI, Park JW, Park KM. IDH2 deficiency increases the liver susceptibility to ischemia-reperfusion injury via increased mitochondrial oxidative injury. Redox Biol 2018;14:142–53. doi: 10.1016/j.redox.2017.09.003 Han SJ Choi HS Kim JI Park JW Park KM IDH2 deficiency increases the liver susceptibility to ischemia-reperfusion injury via increased mitochondrial oxidative injury Redox Biol 201814142 53 10.1016/j.redox.2017.09.003560856128938192Open DOISearch in Google Scholar

Tretter L, Adam-Vizi V. Alpha-ketoglutarate dehydrogenase: a target and generator of oxidative stress. Philos Trans R Soc Lond B Biol Sci 2005;360:2335–45. doi: 10.1098/rstb.2005.1764 Tretter L Adam-Vizi V Alpha-ketoglutarate dehydrogenase: a target and generator of oxidative stress Philos Trans R Soc Lond B Biol Sci 20053602335 45 10.1098/rstb.2005.1764156958516321804Open DOISearch in Google Scholar

eISSN:
1848-6312
Lingue:
Inglese, Slovenian
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Medicine, Basic Medical Science, other