Accesso libero

Effects of simvastatin and fenofibrate on butyrylcholinesterase activity in the brain, plasma, and liver of normolipidemic and hyperlipidemic rats

INFORMAZIONI SU QUESTO ARTICOLO

Cita

1. Clitherow JW, Mitchard M, Harper NJ. The possible biological function of pseudo-cholinesterase. Nature 1963;199:1000-1. doi:10.1038/1991000a010.1038/1991000a0Open DOISearch in Google Scholar

2. Kutty KM. Biological function of cholinesterase. Clin Biochem 1980;13:239-43. doi: 10.1016/S0009-9120(80)80001-4701159210.1016/S0009-9120(80)80001-4Search in Google Scholar

3. Giacobini E. Cholinesterase inhibitors: new roles and therapeutic alternatives. Pharmacol Res 2004;50:433-50. doi: 10.1016/j.phrs.2003.11.0171530424010.1016/j.phrs.2003.11.01715304240Search in Google Scholar

4. Rustemeijer C, Schouten JA, Voerman HJ, Beynen AC, Donker AJ, Heine RJ. Is pseudocholinesterase activity related to markers of triacalglycerol synthesis in type II diabetes mellitus? Clin Sci (Lond) 2001;101:29-35. doi: 10.1042/cs101002910.1042/cs1010029Open DOISearch in Google Scholar

5. Kálmán J, Juhász A, Rakonczay Z, Abrahám G, Zana M, Boda K, Farkas T, Penke B, Janka Z. Increased serum butyrylcholinesterase activity in type IIb hyperlipidaemic patients. Life Sci 2004;75:1195-204. doi: 10.1016/j.lfs.2004.02.01910.1016/j.lfs.2004.02.01915219807Open DOISearch in Google Scholar

6. Cokuğraş AN. Butyrylcholinesterase: structure and physiological importance. Turk J Biochem 2003;28:54-61.Search in Google Scholar

7. Chen VP, Gao Y, Geng L, Brimijoin S. Butyrylcholinesterase regulates central ghrelin signaling and has an impact on food intake and glucose homeostasis. Int J Obes (Lond) 2017;41:1413-9. doi: 10.1038/ijo.2017.12310.1038/ijo.2017.123558504228529331Open DOISearch in Google Scholar

8. Milić M, Žunec S, Micek V, Kašuba V, Mikolić A, Lovaković BT, Semren TŽ, Pavičić I, Marjanović Čermak AM, Pizent A, Lucić Vrdoljak A, Valencia-Quintana R, Sánchez-Alarcón J, Želježić D. Oxidative stress, cholinesterase activity, and DNA damage in the liver, whole blood, and plasma of Wistar rats following a 28-day exposure to glyphosate. Arh Hig Rada Toksikol 2018;69:154-68. doi: 10.2478/aiht-2018-69-311410.2478/aiht-2018-69-311429990293Search in Google Scholar

9. Pohanka M. Inhibitors of acetylcholinesterase and butyrylcholinesterase meet immunity. Int J Mol Sci 2014;15:9809-25. doi: 10.3390/ijms1506980910.3390/ijms15069809410012324893223Open DOISearch in Google Scholar

10. Lucić Vrdoljak A, Bradamante V, Radić B, Peraica M, Fuchs R, Reiner Z. Butyrylcholinesterase activity and plasma lipids in dexamethasone treated rats. Acta Pharm 2005;55:177-85. PMID: 16179131Search in Google Scholar

11. Bradamante V, Kunec-Vajić E, Lisić M, Dobrić I, Beus I. Plasma cholinesterase activity in patients during therapy with dexamethasone or prednisone. Eur J Clin Pharmacol 1989;36:253-7. doi: 10.1007/BF0055815610.1007/BF005581562744065Open DOISearch in Google Scholar

12. Barabas E, Zsigmond EK, Kirkpatrick AF. The inhibitory effect of esmolol on human plasmacholinesterase. Can Anaesth Soc J 1986;33:332-5. doi: 10.1007/BF0301074610.1007/BF030107463719434Open DOISearch in Google Scholar

13. Feldman S, Karalliedde L. Drug interactions with neuromuscular blockers. Drug Saf 1996;15:261-73. doi: 10.2165/00002018-199615040-0000410.2165/00002018-199615040-00004Open DOISearch in Google Scholar

14. Geula C, Darvesh S. Butyrylcholinesterase, cholinergic neurotransmission and the pathology of Alzheimer’s disease. Drugs Today (Barc) 2004;40:711-21. doi: 10.1358/dot.2004.40.8.85047310.1358/dot.2004.40.8.850473Open DOISearch in Google Scholar

15. Rountree SD, Chan W, Pavlik VN, Darby EJ, Siddiqui S, Doody RS. Persistent treatment with cholinesterase inhibitors and/or memantine slows clinical progression of Alzheimer disease. Alzheimers Res Ther 2009;1:7. doi: 10.1186/alzrt710.1186/alzrt7Open DOISearch in Google Scholar

16. Darvesh S, Martin E, Walsh R, Rockwood K. Differential effects of lipid-lowering agents on human cholinesterases. Clin Biochem 2004;37:42-9. doi: 10.1016/j.clinbiochem.2003.09.00410.1016/j.clinbiochem.2003.09.004Open DOISearch in Google Scholar

17. Cibicková L, Palicka V, Cibicek N, Cermáková E, Micuda S, Bartosová L, Jun D. Differential effects of statins and alendronate on cholinesterases in serum and brain of rats. Physiol Res 2007;56:765-70. PMID: 1708759810.33549/physiolres.931121Search in Google Scholar

18. Macan M, Vukšić A, Žunec S, Konjevoda P, Lovrić J, Kelava M, Štambuk N, Vrkić N, Bradamante V. Effects of simvastatin on malondialdehyde level and esterase activity in plasma and tissue of normolipidemic rats. Pharmacol Rep 2015;67:907-13. doi: 10.1016/j.pharep.2015.02.00510.1016/j.pharep.2015.02.005Open DOISearch in Google Scholar

19. Kunec-Vajić E, Bernat N, Muacević-Katanec D. Effect of hypolipidemic drugs on cholinesterase activity in the rat. Gen Pharmacol 1992;23:217-9. doi: 10.1016/0306-3623(92)90013-A10.1016/0306-3623(92)90013-Open DOISearch in Google Scholar

20. Bradamante V, Vrkić N, Lucić A, Radić B, Macan M. Interrelated effects of high sucrose diet and gemfibrozil on butyrylcholinesterase activity and plasma lipids in rats. Period Biol 2005;107:189-93.Search in Google Scholar

21. Muačević-Katanec D, Bradamante V, Reiner Ž, Sučić M, Poljičanin T, Bušljeta I, Metelko Ž. Clinical study on the effect of simvastatin on butyrylcholinesterase activity. Arzneimittel-Forschung 2005;55:271-5. doi: 10.1055/s-0031-129685610.1055/s-0031-1296856Open DOISearch in Google Scholar

22. Guillen J. FELASA guidelines and recommendations. J Am Assoc Lab Anim Sci 2012;51:311-21. PMCID: PMC3358979Search in Google Scholar

23. Deckardt K, Weber I, Kaspers U, Hellwig J, Tennekes H, van Ravenzwaay B. The effects of inhalation anaesthetics on common clinical pathology parameters in laboratory rats. Food Chem Toxicol 2007;45:1709-18. doi: 10.1016/j.fct.2007.03.00510.1016/j.fct.2007.03.005Open DOISearch in Google Scholar

24. Ellman GL, Courtney KD, Andres V, Feather-Stone RM. A new rapid colorimetric determination of acetycholinesterase activity. Biochem Pharmacol 1961;7:88-95. doi: 10.1016/0006-2952(61)90145-910.1016/0006-2952(61)90145-9Open DOISearch in Google Scholar

25. Rowe P. Essential Statistics for the Pharmaceutical Sciences. 2nd ed. Chichester: Wiley-Blackwell; 2007.Search in Google Scholar

26. Cibicková L, Hyspler R, Micuda S, Cibicek N, Zivna H, Jun D, Ticha A, Brcakova E, Palicka V. The influence of simvastatin, atorvastatin and high-cholesterol diet on acetylcholinesterase activity, amyloid beta and cholesterol synthesis in rat brain. Steroids 2009;74:13-9. doi: 10.1016/j.steroids.2008.08.00710.1016/j.steroids.2008.08.007Open DOISearch in Google Scholar

27. Dalla Y, Singh N, Jaggi AS, Singh D. Memory restorative role of statins in experimental dementia: an evidence of their cholesterol dependent and independent actions. Pharmacol Rep 2010;62:784-96. doi: 10.1016/S1734-1140(10)70339-X10.1016/S1734-1140(10)70339-XOpen DOISearch in Google Scholar

28. Butler EG, England PJ, Williams GM. Effect of peroxisome proliferating hypolipidemic agents on serum activity levels of arylesterase and cholinesterase in rats and mice. Res Commun Chem Pathol Pharmacol 1988;60:125-8. PMID: 3381006Search in Google Scholar

29. Hashimoto F, Ishikawa T, Hamada S, Hayashi H. Effect of gemfibrozil on lipid biosynthesis from acetyl-CoA derived from peroxisomal beta-oxidation. Biochem Pharmacol 1995;49:1213-21. doi: 10.1016/0006-2952(95)00041-W10.1016/0006-2952(95)00041-Open DOISearch in Google Scholar

30. Sisková K, Bilka F, Adameová A, Balazová A, Mydla M, Pauliková I. Influence of lipid imbalance on butyrylcholinesterase activity and biotransformation efficiency. Pharmazie 2012;67:345-50. doi: 10.1691/ph.2012.165310.1691/ph.2012.1653Open DOISearch in Google Scholar

31. Martin G, Duez H, Blanquart C, Berezowski V, Poulain P, Fruchart JC, Najib-Fruchart J, Glineur C, Staels B. Statininduced inhibition of the Rho-signaling pathway activates PPAR alpha and induces HDL apoA-I. J Clin Invest 2001;107:1423-32. doi: 10.1172/JCI1085210.1172/JCI1085220931611390424Open DOISearch in Google Scholar

32. Seo M, Inoue I, Ikeda M, Nakano T, Takahashi S, Katayama S, Komoda T. Statins activate human PPAR alpha promoter and increase PPAR alpha mRNA expression and activation in HepG2 cells. PPAR Res 2008;2008:316306. doi: 10.1155/2008/31630610.1155/2008/316306261038319125197Open DOISearch in Google Scholar

33. Oliveira AC, Bertollo CM, Rocha LT, Nascimento EB Jr, Costa KA, Coelho MM. Antinociceptive and antiedematogenic activities of fenofibrate, an agonist of PPAR alpha, and pioglitazone, an agonist of PPAR gamma. Eur J Pharmacol 2007;561:194-201. doi: 10.1016/j.ejphar.2006.12.02610.1016/j.ejphar.2006.12.02617343847Open DOISearch in Google Scholar

34. Roglans N, Sanguino E, Peris C, Alegret M, Vázquez M, Adzet T, Díaz C, Hernández G, Laguna JC, Sánchez RM. Atorvastatin treatment induced peroxisome proliferatoractivated receptor alpha expression and decreased plasma nonesterified fatty acids and liver triglyceride in fructose-fed rats. J Pharmacol Exp Ther 2002;302:232-9. doi: 10.1124/jpet.302.1.23210.1124/jpet.302.1.23212065722Open DOISearch in Google Scholar

35. Grabacka M, Pierzchalska M, Dean M, Reiss K. Regulation of ketone body metabolism and the role of PPARα. Int J Mol Sci 2016;17:2093. doi: 10.3390/ijms1712209310.3390/ijms17122093518789327983603Open DOISearch in Google Scholar

36. Grygiel-Górniak B. Peroxisome proliferator-activated receptors and their ligands: nutritional and clinical implications - a review. Nutr J 2014;13:17. doi: 10.1186/1475-2891-13-1710.1186/1475-2891-13-17394380824524207Open DOISearch in Google Scholar

37. Ferreira AV, Menezes-Garcia Z, Mario EG, Delpuerto HL, Martins AS, Botion LM. Increased expression of oxidative enzymes in adipose tissue following PPARα-activation. Metabolism 2014;63:456-60. doi: 10.1016/j.metabol.2013.12.00910.1016/j.metabol.2013.12.00924439670Open DOISearch in Google Scholar

38. Kallai-Sanfacon MA, Cayen MN, Dubuc J, Greselin E, Dvornik D. Effect of AY-25,712 and other lipid-lowering agents on liver catalase and liver carnitine acetyltransferase in rats. Proc Soc Exp Biol Med 1983;173:367-71. doi: 10.3181/00379727-173-4165810.3181/00379727-173-416586867010Open DOISearch in Google Scholar

39. Harano Y, Yasui K, Toyama T, Nakajima T, Mitsuyoshi H, Mimani M, Hirasawa T, Itoh Y, Okanoue T. Fenofibrate, a peroxisome proliferator-activated receptor alpha agonist, reduces hepatic steatosis and lipid peroxidation in fatty liver Shionogi mice with hereditary fatty liver. Liver Int 2006;26:613-20. doi: 10.1111/j.1478-3231.2006.01265.x10.1111/j.1478-3231.2006.01265.x16762007Open DOISearch in Google Scholar

40. Roy A, Pahan K. PPARα signaling in the hippocampus: crosstalk between fat and memory. J Neuroimmune Pharmacol 2015;10:30-4. doi: 10.1007/s11481-014-9582-910.1007/s11481-014-9582-9436096625575492Open DOISearch in Google Scholar

41. Lizard G, Rouaud O, Demarquoy J, Cherkaoui-Malki M, Iuliano L. Potential roles of peroxisomes in Alzheimer’s disease and in dementia of the Alzheimer’s type. J Alzheimers Dis 2012;29:241-54. doi: 10.3233/JAD-2011-11116310.3233/JAD-2011-1111632243377622433776Open DOISearch in Google Scholar

42. Berger J, Dorninger F, Forss-Petter S, Kunze M. Peroxisomes in brain development and function. Biochim Biophys Acta 2016;1863:934-55. doi: 10.1016/j.bbamcr.2015.12.00510.1016/j.bbamcr.2015.12.005488003926686055Open DOISearch in Google Scholar

43. Pytel E, Bukowska B, Koter-Michalak M, Olszewska-Banaszczyk M, Gorzelak-Pabiś P, Broncel M. Effect of intensive lipid-lowering therapies on cholinesterase activity in patients with coronary artery disease. Pharmacol Rep 2017;69:150-5. doi: 10.1016/j.pharep.2016.09.01610.1016/j.pharep.2016.09.01627923158Open DOISearch in Google Scholar

eISSN:
0004-1254
Lingue:
Inglese, Slovenian
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Medicina, Scienze medicali di base, altro