1. bookVolume 25 (2022): Edizione 2 (November 2022)
Dettagli della rivista
Prima pubblicazione
06 Sep 2013
Frequenza di pubblicazione
2 volte all'anno
Accesso libero

Reviewing the effect of pyrolysis temperature on the fourier-transform infrared spectra of biochars

Pubblicato online: 01 Nov 2022
Volume & Edizione: Volume 25 (2022) - Edizione 2 (November 2022)
Pagine: 160 - 173
Ricevuto: 29 May 2022
Accettato: 13 Oct 2022
Dettagli della rivista
Prima pubblicazione
06 Sep 2013
Frequenza di pubblicazione
2 volte all'anno

Abbas, T., Rizwan, M., Ali, S., Adrees, M., Mahmood, A., Ziaur-Rehman, M., Ibrahim, M., Arshad, M., & Qayyum, M. F. (2018a). Biochar application increased the growth and yield and reduced cadmium in drought stressed wheat grown in an aged contaminated soil. Ecotoxicology and Environmental Safety, 148, 825–833. https://doi.org/10.1016/j.ecoenv.2017.11.06310.1016/j.ecoenv.2017.11.06329197797 Search in Google Scholar

Abbas, T., Rizwan, M., Ali, S., Adrees, M., Zia-ur-Rehman, M., Qayyum, M. F., Ok, Y. S., & Murtaza, G. (2018b). Effect of biochar on alleviation of cadmium toxicity in wheat (Triticum aestivum L.) grown on Cd-contaminated saline soil. Environmental Science and Pollution Research, 25(26), 25668–25680. https://doi.org/10.1007/s11356-017-8987-410.1007/s11356-017-8987-428397121 Search in Google Scholar

Aghbashlo, M., Tabatabaei, M., Nadian, M. H., Davoodnia, V., & Soltanian, S. (2019). Prognostication of lignocellulosic biomass pyrolysis behavior using ANFIS model tuned by PSO algorithm. Fuel, 253, 189–198. https://doi.org/10.1016/j.fuel.2019.04.16910.1016/j.fuel.2019.04.169 Search in Google Scholar

Ahmad, M., Lee, S. S., Dou, X., Mohan, D., Sung, J. K., Yang, J. E., & Ok, Y. S. (2012). Effects of pyrolysis temperature on soybean stover-and peanut shell-derived biochar properties and TCE adsorption in water. Bioresource Technology, 118, 536–544. https://doi.org/10.1016/j.biortech.2012.05.04210.1016/j.biortech.2012.05.04222721877 Search in Google Scholar

Ahmad, M., Ok, Y. S., Rajapaksha, A. U., Lim, J. E., Kim, B. Y., Ahn, J. H., Lee, Y. H., Al-Wabel, M. I., Lee, S. E., & Lee, S. S. (2016). Lead and copper immobilization in a shooting range soil using soybean stover-and pine needle-derived biochars: Chemical, microbial and spectroscopic assessments. Journal of Hazardous Materials, 301, 179–186. https://doi.org/10.1016/j.jhazmat.2015.08.02910.1016/j.jhazmat.2015.08.02926355413 Search in Google Scholar

Ahmad, M., Rajapaksha, A. U., Lim, J. E., Zhang, M., Bolan, N., Mohan, D., Vithanage, M., Lee, S. S., & Ok, Y. S. (2014). Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere, 99, 19–33. https://doi.org/10.1016/j.chemosphere.2013.10.07110.1016/j.chemosphere.2013.10.07124289982 Search in Google Scholar

Alburquerque, J. A., Calero, J. M., Barrón, V., Torrent, J., del Campillo, M. C., Gallardo, A., & Villar, R. (2014). Effects of biochars produced from different feedstocks on soil properties and sunflower growth. Journal of Plant Nutrition and Soil Science, 177(1), 16–25. https://doi.org/10.1002/jpln.20120065210.1002/jpln.201200652 Search in Google Scholar

Ali, L., Palamanit, A., Techato, K., Ullah, A., Chowdhury, M. S., & Phoungthong, K. (2022). Characteristics of biochars derived from the pyrolysis and Co-pyrolysis of rubberwood sawdust and sewage sludge for further applications. Sustainability, 14(7), 3829. https://doi.org/10.3390/su1407382910.3390/su14073829 Search in Google Scholar

Alkurdi, S. S., Herath, I., Bundschuh, J., Al-Juboori, R. A., Vithanage, M., & Mohan, D. (2019). Biochar versus bone char for a sustainable inorganic arsenic mitigation in water: what needs to be done in future research? Environment International, 127, 52–69. https://doi.org/10.1016/j.envint.2019.03.01210.1016/j.envint.2019.03.01230909094 Search in Google Scholar

Ambaye, T. G., Vaccari, M., van Hullebusch, E. D., Amrane, A., & Rtimi, S. (2021). Mechanisms and adsorption capacities of biochar for the removal of organic and inorganic pollutants from industrial wastewater. International Journal of Environmental Science and Technology, 18(10), 3273–3294. https://doi.org/10.1007/s13762-020-03060-w10.1007/s13762-020-03060-w Search in Google Scholar

Amonette, J. E., Kim, J., Russell, C. K., Palumbo, A. V., & Daniels, W. L. (2003, October). Enhancement of soil carbon sequestration by amendment with fly ash. In Proceedings. Search in Google Scholar

Apaydin-Varol, E., Pütün, E., & Pütün, A. E. (2007). Slow pyrolysis of pistachio shell. Fuel, 86(12–13), 1892–1899. https://doi.org/10.1016/j.fuel.2006.11.04110.1016/j.fuel.2006.11.041 Search in Google Scholar

Asadullah, M., Ab Rasid, N. S., Kadir, S. A. S. A., & Azdarpour, A. (2013). Production and detailed characterization of bio-oil from fast pyrolysis of palm kernel shell. Biomass and Bioenergy, 59, 316–324. https://doi.org/10.1016/j.biombioe.2013.08.03710.1016/j.biombioe.2013.08.037 Search in Google Scholar

Blanco-Canqui, H. (2021). Does biochar improve all soil ecosystem services? GCB Bioenergy, 13(2), 291–304. https://doi.org/10.1111/gcbb.1278310.1111/gcbb.12783 Search in Google Scholar

Bornø, M. L., Müller-Stöver, D. S., & Liu, F. (2018). Contrasting effects of biochar on phosphorus dynamics and bioavailability in different soil types. Science of the Total Environment, 627, 963–974. https://doi.org/10.1016/j.scitotenv.2018.01.28310.1016/j.scitotenv.2018.01.28329426221 Search in Google Scholar

Brewer, C.E., Schmidt-Rohr, K., Satrio, J.A., & Brown, R.C. (2009). Characterization of biochar from fast pyrolysis and gasification systems. Environmental Progress & Sustainable Energy: An Official Publication of the American Institute of Chemical Engineers, 28(3), 386–396. https://doi.org/10.1002/ep.1037810.1002/ep.10378 Search in Google Scholar

Brick, S., & Lyutse, S. (2010). Biochar: Assessing the promise and risks to guide US policy. Natural Resources Defense Council. USA. Search in Google Scholar

Cantrell, K. B., Hunt, P. G., Uchimiya, M., Novak, J. M., & Ro, K. S. (2012). Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar. Bioresource Technology, 107, 419–428. https://doi.org/10.1016/j.biortech.2011.11.08410.1016/j.biortech.2011.11.08422237173 Search in Google Scholar

Cao, X., Ma, L., Gao, B., & Harris, W. (2009). Dairy-manure derived biochar effectively sorbs lead and atrazine. Environmental Science and Technology, 43(9), 3285–3291. https://doi.org/10.1021/es803092k10.1021/es803092k19534148 Search in Google Scholar

Carrier, M., Hardie, A. G., Uras, Ü., Görgens, J., & Knoetze, J. H. (2012). Production of char from vacuum pyrolysis of South-African sugar cane bagasse and its characterization as activated carbon and biochar. Journal of Analytical and Applied Pyrolysis, 96, 24–32. https://doi.org/10.1016/j.jaap.2012.02.01610.1016/j.jaap.2012.02.016 Search in Google Scholar

Chen, B., Chen, Z., & Lv, S. (2011). A novel magnetic biochar efficiently sorbs organic pollutants and phosphate. Bioresource Technology, 102(2), 716–723. https://doi.org/10.1016/j.biortech.2010.08.06710.1016/j.biortech.2010.08.06720863698 Search in Google Scholar

Chen, B., Zhou, D., & Zhu, L. (2008). Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures. Environmental Science and Technology, 42(14), 5137–5143. https://doi.org/10.1021/es800268410.1021/es800268418754360 Search in Google Scholar

Chun, Y., Sheng, G., Chiou, C. T., & Xing, B. (2004). Compositions and sorptive properties of crop residue-derived chars. Environmental Science and Technology, 38(17), 4649–4655. https://doi.org/10.1021/es035034w10.1021/es035034w15461175 Search in Google Scholar

Claoston, N., Samsuri, A. W., Ahmad Husni, M. H., & Mohd Amran, M. S. (2014). Effects of pyrolysis temperature on the physicochemical properties of empty fruit bunch and rice husk biochars. Waste Management and Research, 32(4), 331–339. https://doi.org/10.1177/0734242X1452582210.1177/0734242X1452582224643171 Search in Google Scholar

Dai, S., Li, H., Yang, Z., Dai, M., Dong, X., Ge, X., Sun, M., & Shi, L. (2018). Effects of biochar amendments on speciation and bioavailability of heavy metals in coal-mine-contaminated soil. Human and Ecological Risk Assessment: An International Journal, 24(7), 1887–1900. https://doi.org/10.1080/10807039.2018.142925010.1080/10807039.2018.1429250 Search in Google Scholar

Das, D. D., Schnitzer, M. I., Monreal, C. M., & Mayer, P. (2009). Chemical composition of acid–base fractions separated from biooil derived by fast pyrolysis of chicken manure. Bioresource Technology, 100(24), 6524–6532. https://doi.org/10.1016/j.biortech.2009.06.10410.1016/j.biortech.2009.06.10419646863 Search in Google Scholar

Das, S. K., Ghosh, G. K., & Avasthe, R. (2020). Biochar application for environmental management and toxic pollutant remediation. Biomass Conversion and Biorefinery, 1–12. https://doi.org/10.1007/s13399-020-01078-110.1007/s13399-020-01078-1 Search in Google Scholar

Dieguez-Alonso, A., Funke, A., Anca-Couce, A., Rombolà, A. G., Ojeda, G., Bachmann, J., & Behrendt, F. (2018). Towards biochar and hydrochar engineering – Influence of process conditions on surface physical and chemical properties, thermal stability, nutrient availability, toxicity and wettability. Energies, 11(3), 496. https://doi.org/10.3390/en1103049610.3390/en11030496 Search in Google Scholar

Figueredo, N. A. D., Costa, L. M. D., Melo, L. C. A., Siebeneichlerd, E. A., & Tronto, J. (2017). Characterization of biochars from different sources and evaluation of release of nutrients and contaminants. Revista Ciência Agronômica, 48, 3–403. https://doi.org/10.5935/1806-6690.2017004610.5935/1806-6690.20170046 Search in Google Scholar

Fu, P., Hu, S., Xiang, J., Sun, L., Li, P., Zhang, J., & Zheng, C. (2009). Pyrolysis of maize stalk on the characterization of chars formed under different devolatilization conditions. Energy and Fuels, 23(9), 4605–4611. https://doi.org/10.1021/ef900268y10.1021/ef900268y Search in Google Scholar

Godwin, P. M., Pan, Y., Xiao, H., & Afzal, M. T. (2019). Progress in preparation and application of modified biochar for improving heavy metal ion removal from wastewater. Journal of Bioresources and Bioproducts, 4(1), 31–42. https://doi.org/10.21967/jbb.v4i1.18010.21967/jbb.v4i1.180 Search in Google Scholar

Griffin, D. E., Wang, D., Parikh, S. J., & Scow, K. M. (2017). Short-lived effects of walnut shell biochar on soils and crop yields in a long-term field experiment. Agriculture, Ecosystems and Environment, 236, 21–29. https://doi.org/10.1016/j.agee.2016.11.00210.1016/j.agee.2016.11.002 Search in Google Scholar

He, Z., & Ohno, T. (2012). Fourier transform infrared and fluorescence spectral features of organic matter in conventional and organic dairy manure. Journal of Environmental Quality, 41(3), 911–919. https://doi.org/10.2134/jeq2011.022610.2134/jeq2011.022622565272 Search in Google Scholar

Herath, I., Kumarathilaka, P., Al-Wabel, M. I., Abduljabbar, A., Ahmad, M., Usman, A. R., & Vithanage, M. (2016). Mechanistic modeling of glyphosate interaction with rice husk derived engineered biochar. Microporous and Mesoporous Materials, 225, 280–288. https://doi.org/10.1016/j.micromeso.2016.01.01710.1016/j.micromeso.2016.01.017 Search in Google Scholar

Horák, J., Šimanský, V., Aydin, E., Igaz, D., Buchkina, N., & Balashov, E. (2020). Effects of biochar combined with N-fertilization on soil CO2 emissions, crop yields and relationships with soil properties. Polish Journal of Environmental Studies, 29(5), 3597–3609. https://doi.org/10.15244/pjoes/11765610.15244/pjoes/117656 Search in Google Scholar

Hossain, M. K., Strezov, V., Chan, K. Y., & Nelson, P. F. (2010). Agronomic properties of wastewater sludge biochar and bioavailability of metals in production of cherry tomato (Lycopersicon esculentum). Chemosphere, 78(9), 1167–1171. https://doi.org/10.1016/j.chemosphere.2010.01.00910.1016/j.chemosphere.2010.01.00920110103 Search in Google Scholar

Hou, J., Yu, J., Li, W., He, X., & Li, X. (2022). The Effects of chemical oxidation and high-temperature reduction on surface functional groups and the adsorption performance of biochar for sulfamethoxazole adsorption. Agronomy, 12(2), 510. https://doi.org/10.3390/agronomy1202051010.3390/agronomy12020510 Search in Google Scholar

Huang, H., Reddy, N. G., Huang, X., Chen, P., Wang, P., Zhang, Y., Huang, Y., Lin, P., & Garg, A. (2021). Effects of pyrolysis temperature, feedstock type and compaction on water retention of biochar amended soil. Scientific Reports, 11(1), 1–19. https://doi.org/10.1038/s41598-021-86701-510.1038/s41598-021-86701-5801694333795757 Search in Google Scholar

Huang, Y. F., Kuan, W. H., Lo, S.L., & Lin, C.F. (2008). Total recovery of resources and energy from rice straw using microwave-induced pyrolysis. Bioresource technology, 99(17), 8252–8258. https://doi.org/10.1016/j.biortech.2008.03.02610.1016/j.biortech.2008.03.02618440807 Search in Google Scholar

IBI (2012) Standardized product definition and product testing guidelines for biochar that is used in soil. International Biochar Initiative. April 2012. Search in Google Scholar

Ippolito, J. A., Cui, L., Kammann, C., Wrage-Mönnig, N., Estavillo, J. M., Fuertes-Mendizabal, T., Cayuela, M. L., Sigua, G., Novak, J., Spokas, K., & Borchard, N. (2020). Feedstock choice, pyrolysis temperature and type influence biochar characteristics: a comprehensive meta-data analysis review. Biochar, 2(4), 421–438. https://doi.org/10.1007/s42773-020-00067-x10.1007/s42773-020-00067-x Search in Google Scholar

Janu, R., Mrlik, V., Ribitsch, D., Hofman, J., Sedláček, P., Bielská, L., & Soja, G. (2021). Biochar surface functional groups as affected by biomass feedstock, biochar composition and pyrolysis temperature. Carbon Resources Conversion, 4, 36–46. https://doi.org/10.1016/j.crcon.2021.01.00310.1016/j.crcon.2021.01.003 Search in Google Scholar

Jung, J. M., Oh, J. I., Baek, K., Lee, J., & Kwon, E. E. (2018). Biodiesel production from waste cooking oil using biochar derived from chicken manure as a porous media and catalyst. Energy Conversion and Management, 165, 628–633. https://doi.org/10.1016/j.enconman.2018.03.09610.1016/j.enconman.2018.03.096 Search in Google Scholar

Keiluweit, M., Nico, P. S., Johnson, M. G., & Kleber, M. (2010). Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environmental Science and Technology, 44(4), 1247–1253. https://doi.org/10.1021/es903141910.1021/es903141920099810 Search in Google Scholar

Khan, K. Y., Ali, B., Cui, X., Feng, Y., Yang, X., & Stoffella, P. J. (2017). Impact of different feedstocks derived biochar amendment with cadmium low uptake affinity cultivar of pak choi (Brassica rapa ssb. chinensis L.) on phytoavoidation of Cd to reduce potential dietary toxicity. Ecotoxicology and Environmental Safety, 141, 129–138. https://10.1016/j.ecoenv.2017.03.02010.1016/j.ecoenv.2017.03.020 Search in Google Scholar

Kiran, Y. K., Barkat, A., Cui, X. Q., Ying, F. E. N. G., Pan, F. S., Lin, T. A. N. G., & Yang, X. E. (2017). Cow manure and cow manure-derived biochar application as a soil amendment for reducing cadmium availability and accumulation by Brassica chinensis L. in acidic red soil. Journal of Integrative Agriculture, 16(3), pp.725–734. https://doi.org/10.1016/S2095-3119(16)61488-010.1016/S2095-3119(16)61488-0 Search in Google Scholar

Kloss, S., Zehetner, F., Dellantonio, A., Hamid, R., Ottner, F., Liedtke, V., Schwanninger, M., Gerzabek, M. H., & Soja, G. (2012). Characterization of slow pyrolysis biochars: effects of feedstocks and pyrolysis temperature on biochar properties. Journal of Environmental Quality, 41(4), 990–1000. https://doi.org/10.1016/j.biombioe.2017.06.02410.1016/j.biombioe.2017.06.024 Search in Google Scholar

Kung, C.C., McCarl, B. A., & Chen, C. C. (2014). An environmental and economic evaluation of pyrolysis for energy generation in Taiwan with endogenous land greenhouse gases emissions. International Journal of Environmental Research and Public Health, 11(3), 2973–2991. https://doi.org/10.3390/ijerph11030297310.3390/ijerph110302973398701624619159 Search in Google Scholar

Lammers, K., Arbuckle-Keil, G., & Dighton, J. (2009). FTIR study of the changes in carbohydrate chemistry of three New Jersey pine barrens leaf litters during simulated control burning. Soil Biology and Biochemistry, 41(2), 340–347. https://doi.org/10.1016/j.soilbio.2008.11.00510.1016/j.soilbio.2008.11.005 Search in Google Scholar

Lee, J. W., Kidder, M., Evans, B. R., Paik, S., Buchanan Iii, A. C., Garten, C. T., & Brown, R. C. (2010). Characterization of biochars produced from cornstovers for soil amendment. Environmental Science and Technology, 44(20), 7970–7974. https://doi.org/10.1021/es101337x10.1021/es101337x20836548 Search in Google Scholar

Lehmann, J., & Joseph, S. eds. (2015). Biochar for environmental management: science, technology and implementation. Routledge.10.4324/9780203762264 Search in Google Scholar

Lehmann, J., Gaunt, J., & Rondon, M. (2006). Bio-char sequestration in terrestrial ecosystems. Mitig. Adapt. Strat. Glob. Change, 11, 395–419. https://doi.org/10.1007/s11027-005-9006-510.1007/s11027-005-9006-5 Search in Google Scholar

Li, F., Shen, K., Long, X., Wen, J., Xie, X., Zeng, X., Liang, Y., Wei, Y., Lin, Z., Huang, W., & Zhong, R. (2016). Preparation and characterization of biochars from Eichornia crassipes for cadmium removal in aqueous solutions. PloS one, 11(2), e0148132. https://doi.org/10.1371/journal.pone.014813210.1371/journal.pone.0148132475554426882239 Search in Google Scholar

Lin, D., Pan, B., Zhu, L., & Xing, B. (2007). Characterization and phenanthrene sorption of tea leaf powders. Journal of Agricultural and Food Chemistry, 55(14), 5718–5724. https://doi.org/10.1021/jf070703110.1021/jf070703117579435 Search in Google Scholar

Lin, L., Qiu, W., Wang, D., Huang, Q., Song, Z., & Chau, H.W. (2017). Arsenic removal in aqueous solution by a novel Fe-Mn modified biochar composite: characterization and mechanism. Ecotoxicology and environmental safety, 144, 514–521. https://doi.org/10.1016/j.ecoenv.2017.06.06310.1016/j.ecoenv.2017.06.06328675865 Search in Google Scholar

Liu, Y., He, Z., & Uchimiya, M. (2015). Comparison of biochar formation from various agricultural by-products using FTIR spectroscopy. Modern Applied Science, 9(4), 246. http://dx.doi.org/10.5539/mas.v9n4p24610.5539/mas.v9n4p246 Search in Google Scholar

Matin, N. H., Jalali, M., Antoniadis, V., Shaheen, S. M., Wang, J., Zhang, T., Wang, H., & Rinklebe, J. (2020). Almond and walnut shell-derived biochars affect sorption-desorption, fractionation, and release of phosphorus in two different soils. Chemosphere, 241, 124888. https://doi.org/10.1016/j.chemosphere.2019.12488810.1016/j.chemosphere.2019.12488831606574 Search in Google Scholar

Meng, J., Wang, L., Liu, X., Wu, J., Brookes, P. C., & Xu, J. (2013). Physicochemical properties of biochar produced from aerobically composted swine manure and its potential use as an environmental amendment. Bioresource Technology, 142, 641–646. https://doi.org/10.1016/j.biortech.2013.05.08610.1016/j.biortech.2013.05.08623774223 Search in Google Scholar

Mochidzuki, K., Soutric, F., Tadokoro, K., Antal, M. J., Tóth, M., Zelei, B., & Várhegyi, G. (2003). Electrical and physical properties of carbonized charcoals. Industrial and Engineering Chemistry Research, 42(21), 5140–5151. https://doi.org/10.1021/ie030358e10.1021/ie030358e Search in Google Scholar

Mukherjee, A., & Lal, R. (2013). Biochar impacts on soil physical properties and greenhouse gas emissions. Agronomy, 3(2), 313–339. https://doi.org/10.3390/agronomy302031310.3390/agronomy3020313 Search in Google Scholar

Novak, J. M., Lima, I., Xing, B., Gaskin, J. W., Steiner, C., Das, K. C., Ahmedna, M., Rehrah, D., Watts, D. W., Busscher, W. J., & Schomberg, H. (2009). Characterization of designer biochar produced at different temperatures and their effects on a loamy sand. Ann. Environ. Sci, 3(2), 195–206. https://openjournals.neu.edu/aes/journal/article/view/v3art5 Search in Google Scholar

Özçimen, D., & Ersoy-Meriçboyu, A. (2010). Characterization of biochar and bio-oil samples obtained from carbonization of various biomass materials. Renewable Energy, 35(6), 1319–1324. https://doi.org/10.1016/j.renene.2009.11.04210.1016/j.renene.2009.11.042 Search in Google Scholar

Pütün, A. E., Özbay, N., Önal, E. P., & Pütün, E. (2005). Fixed-bed pyrolysis of cotton stalk for liquid and solid products. Fuel Processing Technology, 86(11), 1207–1219. https://doi.org/10.1016/j.fuproc.2004.12.00610.1016/j.fuproc.2004.12.006 Search in Google Scholar

Rao, H. J. (2021). Characterization studies on adsorption of lead and cadmium using activated carbon prepared from waste tyres. Nature Environment and Pollution Technology, 20(2). https://doi.org/10.46488/NEPT.2021.v20i02.01210.46488/NEPT.2021.v20i02.012 Search in Google Scholar

Regmi, A., Singh, S., Moustaid-Moussa, N., Coldren, C., & Simpson, C. (2022). The Negative Effects of High Rates of Biochar on Violas Can Be Counteracted with Fertilizer. Plants,11(4), 491. https://doi.org/10.3390/plants1104049110.3390/plants11040491887508235214822 Search in Google Scholar

Sahoo, K., Kumar, A., & Chakraborty, J.P. (2021). A comparative study on valuable products: bio-oil, biochar, non-condensable gases from pyrolysis of agricultural residues. Journal of Material Cycles and Waste Management, 23(1), 186–204. https://doi.org/10.1007/s10163-020-01114-210.1007/s10163-020-01114-2 Search in Google Scholar

Septien, S., Valin, S., Dupont, C., Peyrot, M., & Salvador, S. (2012). Effect of particle size and temperature on woody biomass fast pyrolysis at high temperature (1000–1400 C). Fuel, 97, 202–210. https://doi.org/10.1016/j.fuel.2012.01.04910.1016/j.fuel.2012.01.049 Search in Google Scholar

Shackley, S., Carter, S., Knowles, T., Middelink, E., Haefele, S., Sohi, S., Cross, A., & Haszeldine, S. (2012). Sustainable gasification-biochar systems? A case-study of rice-husk gasification in Cambodia, Part I: Context, chemical properties, environmental and health and safety issues. Energy Policy, 42, 49–58. https://doi.org/10.1016/j.enpol.2011.11.02610.1016/j.enpol.2011.11.026 Search in Google Scholar

Song, H., Wang, J., Garg, A., Lin, X., Zheng, Q., & Sharma, S. (2019). Potential of novel biochars produced from invasive aquatic species outside food chain in removing ammonium nitrogen: Comparison with conventional biochars and clinoptilolite. Sustainability, 11(24), 7136. https://doi.org/10.3390/su1124713610.3390/su11247136 Search in Google Scholar

Spokas, K. A., Koskinen, W. C., Baker, J. M., & Reicosky, D. C. (2009). Impacts of woodchip biochar additions on greenhouse gas production and sorption/degradation of two herbicides in a Minnesota soil. Chemosphere, 77(4), 574–581. https://doi.org/10.1016/j.chemosphere.2009.06.05310.1016/j.chemosphere.2009.06.05319647284 Search in Google Scholar

Sun, K., Ro, K., Guo, M., Novak, J., Mashayekhi, H., & Xing, B. (2011). Sorption of bisphenol A, 17α-ethinyl estradiol and phenanthrene on thermally and hydrothermally produced biochars. Bioresource Technology, 102(10), 5757–5763. https://doi.org/10.1016/j.biortech.2011.03.03810.1016/j.biortech.2011.03.03821463938 Search in Google Scholar

Sun, Y., Gao, B., Yao, Y., Fang, J., Zhang, M., Zhou, Y., Chen, H., & Yang, L. (2014). Effects of feedstock type, production method, and pyrolysis temperature on biochar and hydrochar properties. Chemical Engineering Journal, 240, 574–578. https://doi.org/10.1016/j.cej.2013.10.08110.1016/j.cej.2013.10.081 Search in Google Scholar

Toková, L., Igaz, D., Horák, J., & Aydin, E. (2020). Effect of biochar application and re-application on soil bulk density, porosity, saturated hydraulic conductivity, water content and soil water availability in a silty loam Haplic Luvisol. Agronomy, 10(7), 1005. https://doi.org/10.3390/agronomy1007100510.3390/agronomy10071005 Search in Google Scholar

Tong, X. J., Li, J. Y., Yuan, J. H., & Xu, R. K. (2011). Adsorption of Cu (II) by biochars generated from three crop straws. Chemical Engineering Journal, 172(2–3), 828–834. https://doi.org/10.1016/j.cej.2011.06.06910.1016/j.cej.2011.06.069 Search in Google Scholar

Trazzi, P. A., Leahy, J. J., Hayes, M. H., & Kwapinski, W. (2016). Adsorption and desorption of phosphate on biochars. Journal of Environmental Chemical Engineering, 4(1), 37–46. https://doi.org/10.1007/s12517-021-06629-y10.1007/s12517-021-06629-y Search in Google Scholar

Uchimiya, M., Orlov, A., Ramakrishnan, G., & Sistani, K. (2013). In situ and ex situ spectroscopic monitoring of biochar‘s surface functional groups. Journal of Analytical and Applied Pyrolysis, 102, 53–59. https://doi.org/10.1016/j.jaap.2013.03.01410.1016/j.jaap.2013.03.014 Search in Google Scholar

Uchimiya, M., Wartelle, L. H., Klasson, K. T., Fortier, C. A., & Lima, I. M. (2011). Influence of pyrolysis temperature on biochar property and function as a heavy metal sorbent in soil. Journal of Agricultural and Food Chemistry, 59(6), 2501–2510. https://doi.org/10.1021/jf104206c10.1021/jf104206c21348519 Search in Google Scholar

Van de Velden, M., Baeyens, J., Brems, A., Janssens, B., & Dewil, R. (2010). Fundamentals, kinetics and endothermicity of the biomass pyrolysis reaction. Renewable Energy, 35(1), 232–242. https://doi.org/10.1016/j.renene.2009.04.01910.1016/j.renene.2009.04.019 Search in Google Scholar

Verheijen, F., Jeffery, S., Bastos, A. C., Van der Velde, M., & Diafas, I. (2010). Biochar application to soils. A critical scientific review of effects on soil properties, processes, and functions. EUR, 24099, 162. https://doi.org/10.2788/472 Search in Google Scholar

Wu, W., Yang, M., Feng, Q., McGrouther, K., Wang, H., Lu, H., & Chen, Y. (2012). Chemical characterization of rice straw-derived biochar for soil amendment. Biomass and bioenergy, 47, 268–276. https://doi.org/10.1016/j.biombioe.2012.09.03410.1016/j.biombioe.2012.09.034 Search in Google Scholar

Xu, Y., Luo, G., He, S., Deng, F., Pang, Q., Xu, Y., & Yao, H. (2019). Efficient removal of elemental mercury by magnetic chlorinated biochars derived from co-pyrolysis of Fe (NO3) 3-laden wood and polyvinyl chloride waste. Fuel, 239, 982–990. https://doi.org/10.1016/j.fuel.2018.11.10210.1016/j.fuel.2018.11.102 Search in Google Scholar

Yaashikaa, P. R., Kumar, P. S., Varjani, S., & Saravanan, A., (2020). A critical review on the biochar production techniques, characterization, stability and applications for circular bioeconomy. Biotechnology Reports, 28, e00570. https://doi.org/10.1016/j.btre.2020.e0057010.1016/j.btre.2020.e00570771846533304842 Search in Google Scholar

Yaman, S. (2004). Pyrolysis of biomass to produce fuels and chemical feedstocks. Energy Conversion and Management, 45(5), 651–671. https://doi.org/10.1016/S0196-8904(03)00177-810.1016/S0196-8904(03)00177-8 Search in Google Scholar

Yang, H., Yan, R., Chen, H., Lee, D. H., & Zheng, C. (2007). Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel, 86(12–13), 1781–1788. https://doi.org/10.1016/j.fuel.2006.12.01310.1016/j.fuel.2006.12.013 Search in Google Scholar

Yuan, J. H., Xu, R. K., & Zhang, H. (2011). The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresource technology, 102(3), 3488–3497. https://doi.org/10.1016/j.biortech.2010.11.01810.1016/j.biortech.2010.11.01821112777 Search in Google Scholar

Yuan, T., Tahmasebi, A., & Yu, J. (2015). Comparative study on pyrolysis of lignocellulosic and algal biomass using a thermogravimetric and a fixed-bed reactor. Bioresource Technology, 175, 333–341. https://doi.org/10.1016/j.biortech.2014.10.10810.1016/j.biortech.2014.10.10825459840 Search in Google Scholar

Zanzi, R., Sjöström, K., & Björnbom, E. (1996). Rapid high-temperature pyrolysis of biomass in a free-fall reactor. Fuel, 75(5), 545–550. https://doi.org/10.1016/0016-2361(95)00304-510.1016/0016-2361(95)00304-5 Search in Google Scholar

Zeng, Z., Ye, S., Wu, H., Xiao, R., Zeng, G., Liang, J., Zhang, C., Yu, J., Fang, Y., & Song, B. (2019). Research on the sustainable efficacy of g-MoS2 decorated biochar nanocomposites for removing tetracycline hydrochloride from antibiotic-polluted aqueous solution. Science of the Total Environment, 648, 206–217. https://doi.org/10.1016/j.scitotenv.2018.08.10810.1016/j.scitotenv.2018.08.10830118936 Search in Google Scholar

Zhang, J., Huang, B., Chen, L., Li, Y., Li, W., & Luo, Z. (2018). Characteristics of biochar produced from yak manure at different pyrolysis temperatures and its effects on the yield and growth of highland barley. Chemical Speciation and Bioavailability, 30(1), 57–67. https://doi.org/10.1080/09542299.2018.148777410.1080/09542299.2018.1487774 Search in Google Scholar

Zhang, X., Zhao, B., Liu, H., Zhao, Y., & Li, L. (2022). Effects of pyrolysis temperature on biochar’s characteristics and speciation and environmental risks of heavy metals in sewage sludge biochars. Environmental Technology & Innovation, 26, 102288. https://doi.org/10.1016/j.eti.2022.10228810.1016/j.eti.2022.102288 Search in Google Scholar

Zhao, S. X., Ta, N., & Wang, X. D. (2017). Effect of temperature on the structural and physicochemical properties of biochar with apple tree branches as feedstock material. Energies, 10(9), 1293. https://doi.org/10.3390/en1009129310.3390/en10091293 Search in Google Scholar

Zolfi Baariani, M., Ronaghi, A., & Ghasemi, R. (2019). Influence of pyrolysis temperatures on FTIR analysis, nutrient bioavailability, and agricultural use of poultry manure biochars. Communications in Soil Science and Plant Analysis, 50(4), 402–411. https://doi.org/10.1080/00103624.2018.156310110.1080/00103624.2018.1563101 Search in Google Scholar

Articoli consigliati da Trend MD

Pianifica la tua conferenza remota con Sciendo