Accesso libero

Soil microplastics – current research trends and challenges: preliminary results of the earthworm Eisenia fetida impact on glitters

INFORMAZIONI SU QUESTO ARTICOLO

Cita

Ali, I., Cheng, Q., Ding, T., Yiguang, Q., Yuechao, Z., Sun, H., Peng, C., Naz, I., Li, J., & Liu, J. (2021). Micro- and nanoplastics in the environment: Occurrence, detection, characterization and toxicity – A critical review. Journal of Cleaner Production, 313(March), 127863. https://doi.org/10.1016/j.jclepro.2021.12786310.1016/j.jclepro.2021.127863 Search in Google Scholar

Araujo, C. F., Nolasco, M. M., Ribeiro, A. M. P., & Ribeiro-Claro, P. J. A. (2018). Identification of microplastics using Raman spectroscopy: Latest developments and future prospects. Water Research, 142, 426–440. https://doi.org/10.1016/j.watres.2018.05.06010.1016/j.watres.2018.05.06029909221 Search in Google Scholar

Dela Cruz, M., Fukui, M., & Hudgins, S. (2018). All that glitter: Chemical pneumonitis from liquid glitter contents of a broken decorative phone case. Visual Journal of Emergency Medicine, 13(June), 27–28. https://doi.org/10.1016/j.visj.2018.07.03410.1016/j.visj.2018.07.034 Search in Google Scholar

Ding, W., Li, Z., Qi, R., Jones, D. L., Liu, Q., Liu, Q., & Yan, C. (2021). Effect thresholds for the earthworm Eisenia fetida: Toxicity comparison between conventional and biodegradable microplastics. Science of the Total Environment, 781, 146884. https://doi.org/10.1016/j.scitotenv.2021.14688410.1016/j.scitotenv.2021.146884 Search in Google Scholar

Dittbrenner, N., Moser, I., Triebskorn, R., & Capowiez, Y. (2011). Assessment of short and long-term effects of imidacloprid on the burrowing behaviour of two earthworm species (Aporrectodea caliginosa and Lumbricus terrestris) by using 2D and 3D post-exposure techniques. Chemosphere, 84(10), 1349–1355. https://doi.org/10.1016/j.chemosphere.2011.05.01110.1016/j.chemosphere.2011.05.01121632088 Search in Google Scholar

Fossi, M. C., Akdogan, Z., & Guven, B. (2019). This paper has been recommended for acceptance by Microplastics in the environment : A critical review of current understanding and identification of future research needs. Environmental Pollution, 254, 113011. https://doi.org/10.1016/j.envpol.2019.11301110.1016/j.envpol.2019.11301131404735 Search in Google Scholar

Galloway, T., & Lewis, C. (2017). Marine microplastics. Current Biology, 27(11), R445–R446. https://doi.org/10.1016/j.cub.2017.01.04310.1016/j.cub.2017.01.04328586673 Search in Google Scholar

Gonçalves, J. M., & Bebianno, M. J. (2021). Nanoplastics impact on marine biota: A review. Environmental Pollution, 273. https://doi.org/10.1016/j.envpol.2021.11642610.1016/j.envpol.2021.11642633493763 Search in Google Scholar

Green, D. S., Jefferson, M., Boots, B., & Stone, L. (2021). All that glitters is litter? Ecological impacts of conventional versus biodegradable glitter in a freshwater habitat. Journal of Hazardous Materials, 402(September), 124070. https://doi.org/10.1016/j.jhazmat.2020.12407010.1016/j.jhazmat.2020.12407033254837 Search in Google Scholar

Guo, J. J., Huang, X. P., Xiang, L., Wang, Y. Z., Li, Y. W., Li, H., Cai, Q. Y., Mo, C. H., & Wong, M. H. (2020). Source, migration and toxicology of microplastics in soil. Environment International, 137(July), 105263. https://doi.org/10.1016/j.envint.2019.10526310.1016/j.envint.2019.10526332087481 Search in Google Scholar

He, D., Luo, Y., Lu, S., Liu, M., Song, Y., & Lei, L. (2018). Microplastics in soils: Analytical methods, pollution characteristics and ecological risks. TrAC – Trends in Analytical Chemistry, 109, 163–172. https://doi.org/10.1016/j.trac.2018.10.00610.1016/j.trac.2018.10.006 Search in Google Scholar

Huerta Lwanga, E., Gertsen, H., Gooren, H., Peters, P., Salánki, T., van der Ploeg, M., Besseling, E., Koelmans, A. A., & Geissen, V. (2017). Incorporation of microplastics from litter into burrows of Lumbricus terrestris. Environmental Pollution, 220, 523–531. https://doi.org/10.1016/j.envpol.2016.09.09610.1016/j.envpol.2016.09.09627726978 Search in Google Scholar

Huerta Lwanga, E., Thapa, B., Yang, X., Gertsen, H., Salánki, T., Geissen, V., & Garbeva, P. (2018). Decay of low-density polyethylene by bacteria extracted from earthworm’s guts: A potential for soil restoration. Science of the Total Environment, 624, 753–757. https://doi.org/10.1016/j.scitotenv.2017.12.14410.1016/j.scitotenv.2017.12.14429272844 Search in Google Scholar

Kwak, J. Il & An, Y. J. (2021). Microplastic digestion generates fragmented nanoplastics in soils and damages earthworm spermatogenesis and coelomocyte viability. Journal of Hazardous Materials, 402(September), 124034. https://doi.org/10.1016/j.jhazmat.2020.12403410.1016/j.jhazmat.2020.12403433254833 Search in Google Scholar

Lackmann, C., Velki, M., Šimić, A., Müller, A., Braun, U., Ečimović, S., & Hollert, H. (2022). Two types of microplastics (polystyrene-HBCD and car tire abrasion) affect oxidative stress-related biomarkers in earthworm Eisenia andrei in a time-dependent manner. Environment International, 163(March). https://doi.org/10.1016/j.envint.2022.10719010.1016/j.envint.2022.10719035316749 Search in Google Scholar

Lahive, E., Cross, R., Saarloos, A. I., Horton, A. A., Svendsen, C., Hufenus, R., & Mitrano, D. M. (2022). Earthworms ingest microplastic fibres and nanoplastics with effects on egestion rate and long-term retention. Science of the Total Environment, 807, 151022. https://doi.org/10.1016/j.scitotenv.2021.15102210.1016/j.scitotenv.2021.15102234662614 Search in Google Scholar

Lang, M., Wang, G., Yang, Y., Zhu, W., Zhang, Y., Ouyang, Z., & Guo, X. (2022). The occurrence and effect of altitude on microplastics distribution in agricultural soils of Qinghai Province, northwest China. Science of the Total Environment, 810, 152174. https://doi.org/10.1016/j.scitotenv.2021.15217410.1016/j.scitotenv.2021.15217434896515 Search in Google Scholar

Luo, Y., Gibson, C. T., Chuah, C., Tang, Y., Naidu, R., & Fang, C. (2022). Applying Raman imaging to capture and identify microplastics and nanoplastics in the garden. Journal of Hazardous Materials, 426(November), 127788. https://doi.org/10.1016/j.jhazmat.2021.12778810.1016/j.jhazmat.2021.12778834823958 Search in Google Scholar

Manzoor, S., Naqash, N., Rashid, G., & Singh, R. (2021). Plastic Material Degradation and Formation of Microplastic in the Environment: A Review. Environmental Pollution 274, 4, 0–3. https://doi.org/10.1016/j.matpr.2021.09.37910.1016/j.matpr.2021.09.379 Search in Google Scholar

McTavish, M. J., & Murphy, S. D. (2021a). Rapid redistribution and long-term aggregation of mulch residues by earthworms (Lumbricus terrestris). Applied Soil Ecology, 169(August), 104195. https://doi.org/10.1016/j.apsoil.2021.10419510.1016/j.apsoil.2021.104195 Search in Google Scholar

McTavish, M. J., & Murphy, S. D. (2021b). Three-dimensional mapping of earthworm (Lumbricus terrestris) seed transport. Pedobiologia, 87–88(June), 150752. https://doi.org/10.1016/j.pedobi.2021.15075210.1016/j.pedobi.2021.150752 Search in Google Scholar

Najjar, K., & Bridge, C. M. (2020). SEM-EDS analysis and characterization of glitter and shimmer cosmetic particles. Forensic Science International, 317, 110527. https://doi.org/10.1016/j.forsciint.2020.11052710.1016/j.forsciint.2020.11052733065447 Search in Google Scholar

Ng, E. L., Huerta Lwanga, E., Eldridge, S. M., Johnston, P., Hu, H. W., Geissen, V., & Chen, D. (2018). An overview of microplastic and nanoplastic pollution in agroecosystems. Science of the Total Environment, 627, 1377–1388. https://doi.org/10.1016/j.scitotenv.2018.01.34110.1016/j.scitotenv.2018.01.34130857101 Search in Google Scholar

Praveena, S. M., Shaifuddin, S. N. M., & Akizuki, S. (2018). Exploration of microplastics from personal care and cosmetic products and its estimated emissions to marine environment: An evidence from Malaysia. Marine Pollution Bulletin, 136(September), 135–140. https://doi.org/10.1016/j.marpolbul.2018.09.01210.1016/j.marpolbul.2018.09.01230509794 Search in Google Scholar

Rogasik, H., Schrader, S., Onasch, I., Kiesel, J., & Gerke, H. H. (2014). Micro-scale dry bulk density variation around earthworm (Lumbricus terrestris L.) burrows based on X-ray computed tomography. Geoderma, 213, 471–477. https://doi.org/10.1016/j.geoderma.2013.08.03410.1016/j.geoderma.2013.08.034 Search in Google Scholar

Sajjad, M., Huang, Q., Khan, S., Khan, M. A., Liu, Y., Wang, J., Lian, F., Wang, Q., & Guo, G. (2022). Microplastics in the soil environment: A critical review. Environmental Technology and Innovation, 27, 102408. https://doi.org/10.1016/j.eti.2022.10240810.1016/j.eti.2022.102408 Search in Google Scholar

Schell, T., Hurley, R., Buenaventura, N. T., Mauri, P. V., Nizzetto, L., Rico, A., & Vighi, M. (2022). Fate of microplastics in agricultural soils amended with sewage sludge: Is surface water runoff a relevant environmental pathway? Environmental Pollution, 293(November), 118520. https://doi.org/10.1016/j.envpol.2021.11852010.1016/j.envpol.2021.11852034800590 Search in Google Scholar

Sun, W., Meng, Z., Li, R., Zhang, R., Jia, M., Yan, S., Tian, S., Zhou, Z., & Zhu, W. (2021). Joint effects of microplastic and dufulin on bioaccumulation, oxidative stress and metabolic profile of the earthworm (Eisenia fetida). Chemosphere, 263, 128171. https://doi.org/10.1016/j.chemosphere.2020.12817110.1016/j.chemosphere.2020.12817133297140 Search in Google Scholar

Tagg, A. S., & Ivar do Sul, J. A. (2019). Is this your glitter? An overlooked but potentially environmentally-valuable microplastic. Marine Pollution Bulletin, 146(May), 50–53. https://doi.org/10.1016/j.marpolbul.2019.05.06810.1016/j.marpolbul.2019.05.06831426186 Search in Google Scholar

Tian, L., Jinjin, C., Ji, R., Ma, Y., & Yu, X. (2022). Microplastics in agricultural soils: sources, effects, and their fate. Current Opinion in Environmental Science and Health, 25, 100311. https://doi.org/10.1016/j.coesh.2021.10031110.1016/j.coesh.2021.100311 Search in Google Scholar

Vernoud, L., Bechtel, H. A., Martin, M. C., Reffner, J. A., & Blackledge, R. D. (2011). Characterization of multilayered glitter particles using synchrotron FT-IR microscopy. Forensic Science International, 210(1–3), 47–51. https://doi.org/10.1016/j.forsciint.2011.01.03310.1016/j.forsciint.2011.01.03321354727 Search in Google Scholar

Wang, C., Yu, J., Lu, Y., Hua, D., Wang, X., & Zou, X. (2021). Biodegradable microplastics (BMPs): a new cause for concern? Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-021-16435-410.1007/s11356-021-16435-434532795 Search in Google Scholar

Wang, Q., Feng, X., Liu, Y., Cui, W., Sun, Y., Zhang, S., & Wang, F. (2022). Effects of microplastics and carbon nanotubes on soil geochemical properties and bacterial communities. Journal of Hazardous Materials, 433(March), 128826. https://doi.org/10.1016/j.jhazmat.2022.12882610.1016/j.jhazmat.2022.12882635381513 Search in Google Scholar

Xu, G., Yang, Y., & Yu, Y. (2021). Size effects of polystyrene microplastics on the accumulation and toxicity of (semi-) metals in earthworms. Environmental Pollution, 291(July), 118194. https://doi.org/10.1016/j.envpol.2021.11819410.1016/j.envpol.2021.11819434543956 Search in Google Scholar

Ya, H., Jiang, B., Xing, Y., Zhang, T., Lv, M., & Wang, X. (2021). Recent advances on ecological effects of microplastics on soil environment. Science of the Total Environment, 798, 149338. https://doi.org/10.1016/j.scitotenv.2021.14933810.1016/j.scitotenv.2021.14933834375233 Search in Google Scholar

Yurtsever, M. (2019). Tiny, shiny, and colorful microplastics: Are regular glitters a significant source of microplastics? Marine Pollution Bulletin, 146(July), 678–682. https://doi.org/10.1016/j.marpolbul.2019.07.00910.1016/j.marpolbul.2019.07.00931426209 Search in Google Scholar

Zhang, L., Sintim, H. Y., Bary, A. I., Hayes, D. G., Wadsworth, L. C., Anunciado, M. B., & Flury, M. (2018). Interaction of Lumbricus terrestris with macroscopic polyethylene and biodegradable plastic mulch. Science of the Total Environment, 635, 1600–1608. https://doi.org/10.1016/j.scitotenv.2018.04.05410.1016/j.scitotenv.2018.04.05429678255 Search in Google Scholar

eISSN:
1338-5259
Lingua:
Inglese
Frequenza di pubblicazione:
2 volte all'anno
Argomenti della rivista:
Industrial Chemistry, Green and Sustainable Technology