Accesso libero

Numerical assessment of climate change impact on the hydrological regime of a small Mediterranean river, Lesvos Island, Greece

INFORMAZIONI SU QUESTO ARTICOLO

Cita

Ali, M., Khan, S. J., Aslam, I., & Khan, Z. (2011). Simulation of the impacts of land-use change on surface runoff of Lai Nullah Basin in Islamabad, Pakistan. Landsc. Urban Plan., 102(4), 271–279.10.1016/j.landurbplan.2011.05.006 Search in Google Scholar

Bai, Y., Zhang, Z., & Zhao, W. (2019). Assessing the Impact of Climate Change on Flood EventsUsing HEC-HMS and CMIP5. Water Air Soil Pollution. 230(119). https://doi.org/10.1007/s11270-019-4159-010.1007/s11270-019-4159-0 Search in Google Scholar

Bates, B.C. et al. (2008). Climate change and water. Technical paper of the Intergovernmental Panel on Climate Change. IPCC Secretariat. Search in Google Scholar

Blaney, H. F., & Criddle, W. D. (1950). Determining water requirements in irrigated areas from climatological and irrigated data. SCS, TP-96, USDA. Search in Google Scholar

Chisanga, C. B., Phiri, E., & Chinene, V. R. N. (2017). Statistical Downscaling of Precipitation and Temperature Using Long Ashton Research Station Weather Generator in Zambia: A Case of Mount Makulu Agriculture Research Station. American Journal of Climate Change, 6, 487–512. DOI: 10.4236/ajcc.2017.63025. http://www.scirp.org/journal/ajcc10.4236/ajcc.2017.63025 Search in Google Scholar

Cisneros, J. B.E. (2014). Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In V.R. Barros, C.B. Field, D.J. Dokken, M.D. Mastrandrea, K.J. Mach, T.E. Bilir, M. Chatterjee, K.L. Ebi, Y.O. Estrada, O.C. Genova, et al. Eds., Climate Change 2014: Impacts, Adaptation, and Vulnerability (pp. 229–269). Cambridge University Press. Search in Google Scholar

Doorenbos, J., & Pruitt, W.O. (1977). Crop water requirements (Irrigation and Drainage Paper No. 24, 144 p.). FAO, United Nations. Search in Google Scholar

Ebrahim, G. Y., Jonoski, A., van Griensven, A., & Di Baldassarre, G. (2012). Downscaling technique uncertainty in assessing hydrological impact of climate change in the Upper Beles River Basin, Ethiopia. Hydrology Research, 44(2), 377–398. doi: 10.2166/nh.2012.037.10.2166/nh.2012.037 Search in Google Scholar

Emam, A. R., Mishra, B. K., Kumar, P., Masago, Y., & Fukushi, K. (2016). Impact Assessment of Climate and Land-Use Changes on Flooding Behavior in the Upper Ciliwung River, Jakarta, Indonesia. Water, 8, 559. doi:10.3390/w8120559.10.3390/w8120559 Search in Google Scholar

European Environmental Agency. https://www.eea.europa.eu/data-and-maps/data/eu-dem Search in Google Scholar

Hajian, F., Dykes, A. P., Zahabiyoun, B., & Ibsen, M. (2016). Prediction of climate change effects on the runoff regime of a forested basin in northern Iran. Hydrological Sciences Journal, 61(15), 2729–2739. DOI: 10.1080/02626667.2016.1171870.10.1080/02626667.2016.1171870 Search in Google Scholar

Hewer, M. J. & Gough, W.A. (2018). Thirty years of assessing the impacts of climate change on outdoor recreation and tourism in Canada. Tour Manag Perspect, 26,179–192. https://doi.org/10.1016/j.tmp.2017.07.00310.1016/j.tmp.2017.07.003 Search in Google Scholar

HMSO. (1962). Weather in the Mediterranean I: general meteorology (2nd ed.). Her Majesty’s Stationery Office. Search in Google Scholar

Intergovernmental Panel on Climate Change (IPCC). (2000). IPCC Special Report Emissions Scenarios. Intergovernmental Panel on Climate Change, Working Group III. IPCC. Search in Google Scholar

Intergovernmental Panel on Climate Change (IPCC). (2014). In R.K. Pachauri, L.A. Meyer (Eds.), Climate Change 2014: Synthesis Report. Core Writing Team, Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC. Search in Google Scholar

Ismail, H., Kamal, Md. R., Abdullah, A. F. B., Jada, D. T., & Hin, L. S. (2020). Modeling Future Streamflow for Adaptive Water Allocation under Climate Change for the Tanjung Karang Rice Irrigation Scheme Malaysia. Applied Sciences, 10(14), 4885. doi:10.3390/app10144885.10.3390/app10144885 Search in Google Scholar

Lavell, A., M. Oppenheimer, C. Diop, J. Hess, R. Lempert, J. Li, R. Muir-Wood, & Myeong, S. (2012). Climate change: new dimensions in disaster risk, exposure, vulnerability, and resilience. In C.B. Field, V. Barros, T.F. Stocker, D. Qin, D.J. Dokken, K.L. Ebi, M.D. Mastrandrea, K.J. Mach, G.-K. Plattner, S.K. Allen, M. Tignor, & P.M. Midgley (eds.), Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (pp. 25–64). A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press.10.1017/CBO9781139177245.004 Search in Google Scholar

Manfreda, S. (2018). On the derivation of flow rating curves in data-scarce environments. Journal of Hydrology, 562, 151–154. DOI: 10.1016/j.jhydrol.2018.04.058. https://doi.org/10.1016/j.jhydrol.2018.04.05810.1016/j.jhydrol.2018.04.058 Search in Google Scholar

Matrai, I., & Tzoraki, O. (2018). Assessing stakeholder perceptions regarding floods in Kalloni and Agia Paraskevi, Lesvos Greece. HYDROMEDIT Conference, 818–820. Search in Google Scholar

Meenu, R., Rehana, S., & Mujumdar, P. P. (2012). Assessment of hydrologic impacts of climate change in Tunga – Bhadra river basin, India with HEC-HMS and SDSM. Hydrological prosesses. DOI: 10.1002/hyp.9220.10.1002/hyp.9220 Search in Google Scholar

Moriasi, D.N., Arnold, J.G., Van Liew, M.W., Bingner, R.L., Harmel, R.D. & Veith, T.L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations, Trans. Am. Soc. Agric. and Biol. Eng., 50(3), 885−900. Search in Google Scholar

Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models part I: A discussion of principles. Journal of Hydrology, 10(3), 282–290.10.1016/0022-1694(70)90255-6 Search in Google Scholar

Nourani, V, Baghanam, A.H., & Gokcekus, H. (2018). Data-driven ensemble model to statistically downscale rainfall using nonlinear predictor screening approach. J Hydrol, 565,538–551. https://doi.org/10.1016/j.jhydrol.2018.08.04910.1016/j.jhydrol.2018.08.049 Search in Google Scholar

Nyaupane, N., Mote, S. R., Bhandari, B., & Kalra, A. (2018). Rainfall-Runoff Simulation Using Climate Change Based Precipitation Prediction in HEC-HMS Model for Irwin Creek, Charlotte, North Carolina. World Environmental and Water Resources Congress.10.1061/9780784481400.033 Search in Google Scholar

Parry, M.L., Canziani, O.F., Palutikof, J.P., van der Linden, P.J., & Hanson, C.E. (Eds.) (2007). Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press. Search in Google Scholar

Ponce, V. M. (1989). Engineering Hydrology, Principles and Practices. Search in Google Scholar

Qin, X. S., & Lu, Y. (2014). Study of Climate Change Impact on Flood Frequencies: A Combined Weather Generator and Hydrological Modeling Approach. Journal of hydrometeorology, 15(3), 1205–1219. DOI: 10.1175/JHM-D-13-0126.110.1175/JHM-D-13-0126.1 Search in Google Scholar

Racsko, P., Szeidl, L., & Semenov, M. (1991). A serial approach to local stochastic weather models. Ecol Model, 57, 27–41. https://doi.org/10.1016/0304-3800(91)90053-410.1016/0304-3800(91)90053-4 Search in Google Scholar

Randall, D.A., Wood, R.A., Bony, S., Colman, R., Fichefet, T., Fyfe, J., Kattsov, V., Pitman, A., Shukla, J., Srinivasan, J., Stouffer, R.J., Sumi, A., & Taylor, K.E. (2007). Cilmate Models and Their Evaluation. In S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M.Tignor, H.L. Miller (Eds.), Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press. Search in Google Scholar

Refsgaard, J.C., Arnbjerg-Nielsen, K., & Drews, M., et al. (2013). The role of uncertainty in climate change adaptation strategies – A Danish water management example. Mitig Adapt Strateg Glob Change, 18, 337–359. https://doi.org/10.1007/s11027-012-9366-610.1007/s11027-012-9366-6 Search in Google Scholar

Sharma, D., Gupta, A.D., & Babel, M.S. (2007). Spatial disaggregation of bias-corrected GCM precipitation for improved hydrologic simulation: Ping River Basin, Thailand. Hydrology and Earth System Sciences, 11, 1373–1390. www.hydrol-earth-syst-sci.net/11/1373/2007/10.5194/hess-11-1373-2007 Search in Google Scholar

Scharffenberg, W., Ely, P., Daly, S., Fleming, M., & Pak, J. (2010). Hydrologic Modeling System (HEC-HMS): Physically-Based Simulation Components. 2nd Joint Federal Interagency Conference, Las Vegas, NV. Search in Google Scholar

Semenov, M. A., & Barrow, E. M. (2002). LARS-WG – A Stochastic Weather Generator for Use in Climate Impact Studies. User Manual, Version 3.0 Search in Google Scholar

Semenov, M.A., & Barrow, E.M. (1997). Use of a stochastic weather generator in the development of climate change scenarios. Clim. Chang., 35, 397–414.10.1023/A:1005342632279 Search in Google Scholar

Sharafati, A., Pezeshki, E., Shahid, S., & Motta, D. (2020). Quantification and uncertainty of the impact of climate change on river discharge and sediment yield in the Dehbar river basin in Iran. Journal of Soils and Sediments, 20, 2977–2996. https://doi.org/10.1007/s11368-020-02632-010.1007/s11368-020-02632-0 Search in Google Scholar

Shrestha, A., Babel, M. S., Weesakul, S., & Vojinovic, Z. (2017). Developing Intensity – Duration – Frequency (IDF) Curves under Climate Change Uncertainty: The Case of Bangkok, Thailand. Water, 9(145). doi:10.3390/w902014510.3390/w9020145 Search in Google Scholar

Sunyer, M.A., Madsen, H., & Ang, P.H. (2012). A comparison of different regional climate models and statistical downscaling methods for extreme rainfall estimation under climate change. Atmos. Res., 103, 119–128.10.1016/j.atmosres.2011.06.011 Search in Google Scholar

Tzoraki, O. (2020). Operating Small Hydropower Plants in Greece under Intermittent Flow Uncertainty: The Case of Tsiknias River (Lesvos). Challenges, 11(17), doi:10.3390/challe11020017.10.3390/challe11020017 Search in Google Scholar

U.S. Army Corps of Engineers (USACE). (2013). HECGeoHMS Geospatial Hydrologic Modeling Extension. Hydrologic Engineering Center, User’s Manual, Version 10.1. Search in Google Scholar

U.S. Army Corps of Engineers (USACE). (2018). Hydrologic Modeling System, HEC-HMS. Hydrologic Engineering Center, User’s Manual, Version 4.3. Search in Google Scholar

Verma, A. K., Jha, M. K., & Mahana, R. K. (2010). Evaluation of HEC-HMS and WEPP for simulating watershed runoff using remote sensing and geographical information system. Paddy Water Environ., 8(2), 131–144.10.1007/s10333-009-0192-8 Search in Google Scholar

Wang, M., Zhang, L., & Baddoo, T. D. (2016). Hydrological Modeling in A Semi-Arid Region Using HEC-HMS. Journal of Water Resource and Hydraulic Engineering. DOI: 10.5963/JWRHE0503004.10.5963/JWRHE0503004 Search in Google Scholar

Westerberg, I., Guerrero, J.-L., Seibert, J., Beven, K.J., & Halldin, S. (2011). Stage-discharge uncertainty derived with a non-stationary rating curve in the Choluteca River. Hydrol. Process, 25, 603–613. 10.1002/hyp.7848.10.1002/hyp.7848 Search in Google Scholar

Wilby, R., Dawson, C., & Barrow, E. (2002). SDSM – A decision support tool for the assessment of regional climate change impacts. Environ. Model. Softw., 17, 145–157.10.1016/S1364-8152(01)00060-3 Search in Google Scholar

Wilks, D.S., & Wilby, R.L. (1999). The weather generation game: A review of stochastic weather models. Prog. Phys. Geogr., 23, 329–357.10.1177/030913339902300302 Search in Google Scholar

World Bank Group. (2015). Water and Climate Adaptation Plan for the Sava River Basin. ANNEX 1 – Development of the Hydrologic Model for the Sava River Basin. Search in Google Scholar

Wu, C.H., Huang, G.R., & Yu, H.J. (2015). Prediction of extreme floods based on CMIP5 climate models: a case study in the Beijiang River basin, South China. Hydrology and Earth System Sciences, 19(3), 1385–1399.10.5194/hess-19-1385-2015 Search in Google Scholar

Yilmaz, A. G. & Imteaz, M. A. (2011). Impact of climate change on runoff in the upper part of the Euphrates basin. Hydrological Sciences JournalJournal des Sciences Hydrologiques, 56(7), 1265–1279. DOI:10.1080/02626667.2011.609173.10.1080/02626667.2011.609173 Search in Google Scholar

Zhai, P., Pörtner, H.O., & Roberts, D. (2018) Summary for policymakers. In Global Warming of 1.5 C. An IPCC Special Report on the Impacts of Global Warming of 1.5 C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, p. 32. IPCC. Search in Google Scholar

eISSN:
1338-5259
Lingua:
Inglese
Frequenza di pubblicazione:
2 volte all'anno
Argomenti della rivista:
Industrial Chemistry, Green and Sustainable Technology