Accesso libero

Gut microbiota and drugs. Interactions influencing the efficacy and safety of pharmacotherapy

INFORMAZIONI SU QUESTO ARTICOLO

Cita

Zimmermann M., Zimmermann-Kogadeeva M., Wegmann R., Goodman A.L.: Mapping human microbiome drug metabolism by gut bacteria and their genes. Nature, 2019; 570: 462-467Zimmermann M. Zimmermann-Kogadeeva M. Wegmann R. Goodman A.L. Mapping human microbiome drug metabolism by gut bacteria and their genes Nature 2019 570 462 46710.1038/s41586-019-1291-3Search in Google Scholar

Turnbaugh P.J., Ley R.E., Hamady M., Fraser-Liggett C.M., Knight R., Gordon J.I.: The human microbiome project. Nature, 2007; 449: 804-810Turnbaugh P.J. Ley R.E. Hamady M. Fraser-Liggett C.M. Knight R. Gordon J.I. The human microbiome project Nature 2007 449 804 81010.1038/nature06244Search in Google Scholar

Swanson H.I.: Drug metabolism by the host and gut microbiota: A partnership or rivalry? Drug Metab. Dispos., 2015; 43: 1499-1504Swanson H.I. Drug metabolism by the host and gut microbiota: A partnership or rivalry? Drug Metab Dispos 2015 43 1499 150410.1124/dmd.115.065714Search in Google Scholar

Wilson I.D., Nicholson J.K.: Gut microbiome interactions with drug metabolism, efficacy, and toxicity. Transl. Res., 2017; 179: 204222Wilson I.D. Nicholson J.K. Gut microbiome interactions with drug metabolism, efficacy, and toxicity Transl. Res 2017 179 20422210.1016/j.trsl.2016.08.002Search in Google Scholar

Franzosa E.A., Huang K., Meadow J.F., Gevers D., Lemon K.P., Bohannan B.J., Huttenhower C.: Identifying personal microbiomes using metagenomic codes. Proc. Natl. Acad. Sci. USA, 2015; 112: E2930-E2938Franzosa E.A. Huang K. Meadow J.F. Gevers D. Lemon K.P. Bohannan B.J. Huttenhower C. Identifying personal microbiomes using metagenomic codes Proc. Natl. Acad. Sci. USA 2015 112 E2930 E293810.1073/pnas.1423854112Search in Google Scholar

Baker J.M., Al-Nakkash L., Herbst-Kralovetz M.M.: Estrogen-gut microbiome axis: Physiological and clinical implications. Maturitas, 2017; 103: 45-53Baker J.M. Al-Nakkash L. Herbst-Kralovetz M.M. Estrogen-gut microbiome axis: Physiological and clinical implications Maturitas 2017 103 45 5310.1016/j.maturitas.2017.06.025Search in Google Scholar

Conlon M.A., Bird A.R.: The impact of diet and lifestyle on gut microbiota and human health. Nutrients, 2015; 7: 17-44Conlon M.A. Bird A.R. The impact of diet and lifestyle on gut microbiota and human health Nutrients 2015 7 17 4410.3390/nu7010017Search in Google Scholar

Crovesy L., Masterson D., Rosado E.L.: Profile of the gut microbiota of adults with obesity: A systematic review. Eur. J. Clin. Nutr., 2020; 74, 1251-1262Crovesy L. Masterson D. Rosado E.L. Profile of the gut microbiota of adults with obesity: A systematic review Eur. J. Clin. Nutr 2020 74 1251126210.1038/s41430-020-0607-6Search in Google Scholar

Hopkins M.J., Sharp R., Macfarlane G.T.: Variation in human intestinal microbiota with age. Dig. Liver Dis., 2002; 34: S12-S18Hopkins M.J. Sharp R. Macfarlane G.T. Variation in human intestinal microbiota with age Dig. Liver Dis 2002 34 S12 S1810.1016/S1590-8658(02)80157-8Search in Google Scholar

Claesson M.J., Jeffery I.B., Conde S., Power S.E., O’Connor E.M., Cusack S., Harris H.M., Coakley M., Lakshminarayanan B., O’Sullivan O. i wsp.: Gut microbiota composition correlates with diet and health in the elderly. Nature, 2012; 488: 178-184Claesson M.J. Jeffery I.B. Conde S. Power S.E. O’Connor E.M. Cusack S. Harris H.M. Coakley M. Lakshminarayanan B. O’Sullivan O. i wsp. Gut microbiota composition correlates with diet and health in the elderly Nature 2012 488 178 18410.1038/nature1131922797518Search in Google Scholar

Clark R.I. Walker D.W.: Role of gut microbiota in aging-related health decline: Insights from invertebrate models. Cell Mol. Life Sci., 2018; 75: 93-101Clark R.I. Walker D.W Role of gut microbiota in aging-related health decline: Insights from invertebrate models Cell Mol. Life Sci 2018 75 93 10110.1007/s00018-017-2671-1575425629026921Search in Google Scholar

Clarke G., O’Mahony S.M., Dinan T.G., Cryan J.F.: Priming for health: Gut microbiota acquired in early life regulates physiology, brain and behaviour. Acta Paediatr., 2014; 103: 812-819Clarke G. O’Mahony S.M. Dinan T.G. Cryan J.F. Priming for health: Gut microbiota acquired in early life regulates physiology, brain and behaviour Acta Paediatr 2014 103 812 81910.1111/apa.1267424798884Search in Google Scholar

Dogra S., Sakwinska O., Soh S.E., Ngom-Bru C., Brück W.M., Berger B., Brüssow H., Lee Y.S., Yap F., Chong Y.S. i wsp.: Dynamics of infant gut microbiota are influenced by delivery mode and gestational duration and are associated with subsequent adiposity. mBio, 2015; 6: e02419-14Dogra S. Sakwinska O. Soh S.E. Ngom-Bru C. Brück W.M. Berger B. Brüssow H. Lee Y.S. Yap F. Chong Y.S. i wsp. Dynamics of infant gut microbiota are influenced by delivery mode and gestational duration and are associated with subsequent adiposity mBio 2015 6 e02419 1410.1128/mBio.02419-14432341725650398Search in Google Scholar

Brinkworth G.D., Noakes M., Clifton P.M., Bird A.R.: Comparative effects of very low-carbohydrate, high-fat and high-carbohydrate, low-fat weight-loss diets on bowel habit and faecal short-chain fatty acids and bacterial populations. Br. J. Nutr., 2009; 101: 14931502Brinkworth G.D. Noakes M. Clifton P.M. Bird A.R. Comparative effects of very low-carbohydrate, high-fat and high-carbohydrate, low-fat weight-loss diets on bowel habit and faecal short-chain fatty acids and bacterial populations Br. J. Nutr 2009 101 1493150210.1017/S000711450809465819224658Search in Google Scholar

Ticinesi A., Milani C., Lauretani F., Nouvenne A., Mancabelli L., Lugli G.A., Turroni F., Duranti S., Mangifesta M., Viappiani A. i wsp.: Gut microbiota composition is associated with polypharmacy in elderly hospitalized patients. Sci. Rep., 2017; 7: 11102Ticinesi A. Milani C. Lauretani F. Nouvenne A. Mancabelli L. Lugli G.A. Turroni F. Duranti S. Mangifesta M. Viappiani A. i wsp. Gut microbiota composition is associated with polypharmacy in elderly hospitalized patients Sci. Rep 2017 7 1110210.1038/s41598-017-10734-y559388728894183Search in Google Scholar

Stokholm J., Thorsen J., Blaser M.J., Rasmussen M.A., Hjelmsø M., Shah S., Christensen E.D., Chawes B.L., Bønnelykke K., Brix S. i wsp.: Delivery mode and gut microbial changes correlate with an increased risk of childhood asthma. Sci. Transl. Med., 2020; 12: eaax9929Stokholm J. Thorsen J. Blaser M.J. Rasmussen M.A. Hjelmsø M. Shah S. Christensen E.D. Chawes B.L. Bønnelykke K. Brix S. i wsp. Delivery mode and gut microbial changes correlate with an increased risk of childhood asthma Sci. Transl. Med 2020 12 eaax992910.1126/scitranslmed.aax992933177184Search in Google Scholar

Tropini C., Earle K.A., Huang K.C., Sonnenburg J.L.: The gut microbiome: Connecting spatial organization to function. Cell Host Microbe, 2017; 21: 433-442Tropini C. Earle K.A. Huang K.C. Sonnenburg J.L. The gut microbiome: Connecting spatial organization to function Cell Host Microbe 2017 21 433 44210.1016/j.chom.2017.03.010557635928407481Search in Google Scholar

Cheng Y., Jin U.H., Allred C.D., Jayaraman A., Chapkin R.S., Safe S.: Aryl hydrocarbon receptor activity of tryptophan metabolites in young adult mouse colonocytes. Drug Metab. Dispos., 2015; 43: 1536-1543Cheng Y. Jin U.H. Allred C.D. Jayaraman A. Chapkin R.S. Safe S. Aryl hydrocarbon receptor activity of tryptophan metabolites in young adult mouse colonocytes Drug Metab. Dispos 2015 43 1536 154310.1124/dmd.115.063677457667625873348Search in Google Scholar

Zelante T., Iannitti R,G., Cunha C., De Luca A., Giovannini G., Pieraccini G., Zecchi R., D’Angelo C., Massi-Benedetti C., Fallarino F.: Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. Immunity, 2013; 39: 372-385Zelante T. Iannitti R.,G. Cunha C. De Luca A. Giovannini G. Pieraccini G. Zecchi R. D’Angelo C. Massi-Benedetti C. Fallarino F. Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22 Immunity 2013 39 372 38510.1016/j.immuni.2013.08.00323973224Search in Google Scholar

Maranduba C.M., De Castro S.B., de Souza G.T., Rossato C., da Guia F.C., Valente M.A., Rettore J.V., Maranduba C.P., de Souza C.M., do Carmo A.M. i wsp.: Intestinal microbiota as modulators of the immune system and neuroimmune system: Impact on the host health and homeostasis. J. Immunol. Res., 2015; 2015: 931574Maranduba C.M. De Castro S.B. de Souza G.T. Rossato C. da Guia F.C. Valente M.A. Rettore J.V. Maranduba C.P. de Souza C.M. do Carmo A.M. i wsp. Intestinal microbiota as modulators of the immune system and neuroimmune system: Impact on the host health and homeostasis J. Immunol. Res 2015 2015 93157410.1155/2015/931574435247325759850Search in Google Scholar

Björkholm B., Bok C.M., Lundin A., Rafter J., Hibberd M.L., Pettersson S.: Intestinal microbiota regulate xenobiotic metabolism in the liver. PLoS One, 2009; 4: e6958Björkholm B. Bok C.M. Lundin A. Rafter J. Hibberd M.L. Pettersson S. Intestinal microbiota regulate xenobiotic metabolism in the liver PLoS One 2009 4 e695810.1371/journal.pone.0006958273498619742318Search in Google Scholar

Kaur H., Bose C., Mande S.S.: Tryptophan metabolism by gut microbiome and gut-brain-axis: An in silico analysis. Front. Neurosci., 2019; 13: 1365Kaur H. Bose C. Mande S.S. Tryptophan metabolism by gut microbiome and gut-brain-axis: An in silico analysis Front. Neurosci 2019 13 136510.3389/fnins.2019.01365693023831920519Search in Google Scholar

Ridaura V., Belkaid Y.: Gut microbiota: The link to your second brain. Cell, 2015; 161: 193-194Ridaura V. Belkaid Y. Gut microbiota: The link to your second brain Cell 2015 161 193 19410.1016/j.cell.2015.03.03325860600Search in Google Scholar

Reigstad C.S., Salmonson C.E., Rainey J.F.3rd, Szurszewski J.H., Linden D.R., Sonnenburg J.L., Farrugia G., Kashyap P.C.: Gut microbes promote colonic serotonin production through an effect of short-chain fatty acids on enterochromaffin cells. FASEB J., 2015; 29: 1395-1403Reigstad C.S. Salmonson C.E. Rainey J.F.3rd Szurszewski J.H. Linden D.R. Sonnenburg J.L. Farrugia G. Kashyap P.C. Gut microbes promote colonic serotonin production through an effect of short-chain fatty acids on enterochromaffin cells FASEB J 2015 29 1395 140310.1096/fj.14-259598439660425550456Search in Google Scholar

Vecsey C.G., Hawk J.D., Lattal K.M., Stein J.M., Fabian S.A., Attner M.A., Cabrera S.M., McDonough C.B., Brindle P.K., Abel T., Wood M.A.: Histone deacetylase inhibitors enhance memory and synaptic plasticity via CREB:CBP-dependent transcriptional activation. J. Neurosci. 2007; 27: 6128-6140Vecsey C.G. Hawk J.D. Lattal K.M. Stein J.M. Fabian S.A. Attner M.A. Cabrera S.M. McDonough C.B. Brindle P.K. Abel T. Wood M.A. Histone deacetylase inhibitors enhance memory and synaptic plasticity via CREB:CBP-dependent transcriptional activation J. Neurosci 2007 27 6128 614010.1523/JNEUROSCI.0296-07.2007292504517553985Search in Google Scholar

Hoyles L., Snelling T., Umlai U.K., Nicholson J.K., Carding S.R., Glen R.C., McArthur S.: Microbiome-host systems interactions: Protective effects of propionate upon the blood-brain barrier. Microbiome, 2018; 6: 55Hoyles L. Snelling T. Umlai U.K. Nicholson J.K. Carding S.R. Glen R.C. McArthur S. Microbiome-host systems interactions: Protective effects of propionate upon the blood-brain barrier Microbiome 2018 6 5510.1186/s40168-018-0439-y586345829562936Search in Google Scholar

Kelly J.R., Kennedy P.J., Cryan J.F., Dinan T.G., Clarke G., Hyland N.P.: Breaking down the barriers: The gut microbiome, intestinal permeability and stress-related psychiatric disorders. Front. Cell. Neurosci., 2015; 9: 392Kelly J.R. Kennedy P.J. Cryan J.F. Dinan T.G. Clarke G. Hyland N.P. Breaking down the barriers: The gut microbiome, intestinal permeability and stress-related psychiatric disorders Front. Cell. Neurosci 2015 9 39210.3389/fncel.2015.00392460432026528128Search in Google Scholar

Baothman O.A., Zamzami M.A., Taher I., Abubaker J., Abu-Farha M.: The role of gut microbiota in the development of obesity and diabetes. Lipids Health Dis., 2016; 15: 108Baothman O.A. Zamzami M.A. Taher I. Abubaker J. Abu-Farha M. The role of gut microbiota in the development of obesity and diabetes Lipids Health Dis 2016 15 10810.1186/s12944-016-0278-4491270427317359Search in Google Scholar

Becker C., Neurath M.F., Wirtz S.: The intestinal microbiota in inflammatory bowel disease. ILAR J., 2015; 56: 192-204Becker C. Neurath M.F. Wirtz S. The intestinal microbiota in inflammatory bowel disease ILAR J 2015 56 192 20410.1093/ilar/ilv03026323629Search in Google Scholar

Dahmus J.D., Kotler D.L., Kastenberg D.M., Kistler C.A.: The gut microbiome and colorectal cancer: A review of bacterial pathogenesis. J. Gastrointest. Oncol., 2018; 9: 769-777Dahmus J.D. Kotler D.L. Kastenberg D.M. Kistler C.A. The gut microbiome and colorectal cancer: A review of bacterial pathogenesis J. Gastrointest. Oncol 2018 9 769 77710.21037/jgo.2018.04.07608787230151274Search in Google Scholar

Kaur H., Das C., Mande S.S.: In silico analysis of putrefaction pathways in bacteria and its implication in colorectal cancer. Front. Microbiol., 2017; 8: 2166Kaur H. Das C. Mande S.S. In silico analysis of putrefaction pathways in bacteria and its implication in colorectal cancer Front. Microbiol 2017 8 216610.3389/fmicb.2017.02166568200329163445Search in Google Scholar

Hughes R., Magee E.A., Bingham S.: Protein degradation in the large intestine: Relevance to colorectal cancer. Curr. Issues Intest. Microbiol., 2000; 1: 51-58Hughes R. Magee E.A. Bingham S. Protein degradation in the large intestine: Relevance to colorectal cancer Curr. Issues Intest. Microbiol 2000 1 51 58Search in Google Scholar

Toden S., Bird A.R., Topping D.L., Conlon M.A.: Resistant starch attenuates colonic DNA damage induced by higher dietary protein in rats. Nutr. Cancer, 2005; 51: 45-51Toden S. Bird A.R. Topping D.L. Conlon M.A. Resistant starch attenuates colonic DNA damage induced by higher dietary protein in rats Nutr. Cancer 2005 51 45 5110.1207/s15327914nc5101_715749629Search in Google Scholar

Shen W., Gaskins H.R., McIntosh M.K.: Influence of dietary fat on intestinal microbes, inflammation, barrier function and metabolic outcomes. J. Nutr. Biochem., 2014; 25: 270-280Shen W. Gaskins H.R. McIntosh M.K. Influence of dietary fat on intestinal microbes, inflammation, barrier function and metabolic outcomes J. Nutr. Biochem 2014 25 270 28010.1016/j.jnutbio.2013.09.00924355793Search in Google Scholar

Nakamura J., Kubota Y., Miyaoka M., Saitoh T., Mizuno F, Benno Y.: Comparison of four microbial enzymes in Clostridia and Bacteroides isolated from human feces. Microbiol. Immunol., 2002; 46: 487-490Nakamura J. Kubota Y. Miyaoka M. Saitoh T. Mizuno F Benno Y. Comparison of four microbial enzymes in Clostridia and Bacteroides isolated from human feces Microbiol. Immunol 2002 46 487 49010.1111/j.1348-0421.2002.tb02723.x12222935Search in Google Scholar

Pollet R.M., D’Agostino E.H., Walton W.G., Xu Y., Little M.S., Biernat K.A., Pellock S.J., Patterson L.M., Creekmore B.C., Isenberg H.N., i wsp.: An atlas of β-glucuronidases in the human intestinal microbiome. Structure, 2017; 25: 967-977Pollet R.M. D’Agostino E.H. Walton W.G. Xu Y. Little M.S. Biernat K.A. Pellock S.J. Patterson L.M. Creekmore B.C. Isenberg H.N. i wsp. An atlas of β-glucuronidases in the human intestinal microbiome Structure 2017 25 967 97710.1016/j.str.2017.05.003553329828578872Search in Google Scholar

Vila A.V., Collij V., Sanna S., Sinha T., Imhann F., Bourgonje A.R., Mujagic Z., Jonkers D.M., Masclee A.A., Fu J. i wsp.: Impact of commonly used drugs on the composition and metabolic function of the gut microbiota. Nat. Commun., 2020; 11: 362Vila A.V. Collij V. Sanna S. Sinha T. Imhann F. Bourgonje A.R. Mujagic Z. Jonkers D.M. Masclee A.A. Fu J. i wsp. Impact of commonly used drugs on the composition and metabolic function of the gut microbiota Nat. Commun 2020 11 36210.1038/s41467-019-14177-z696917031953381Search in Google Scholar

Finlayson-Trick E.C., Fischer J.A., Goldfarb D.M., Karakochuk C.D.: The effects of iron supplementation and fortification on the gut microbiota: A review. Gastrointest. Disord., 2020; 2: 327-340Finlayson-Trick E.C. Fischer J.A. Goldfarb D.M. Karakochuk C.D. The effects of iron supplementation and fortification on the gut microbiota: A review Gastrointest. Disord 2020 2 327 34010.3390/gidisord2040030Search in Google Scholar

Skonieczna-Żydecka K., Łoniewski I., Misera A., Stachowska E., Maciejewska D., Marlicz W., Galling B.: Second-generation antipsychotics and metabolism alterations: A systematic review of the role of the gut microbiome. Psychopharmacology, 2019; 236: 1491-1512Skonieczna-Żydecka K. Łoniewski I. Misera A. Stachowska E. Maciejewska D. Marlicz W. Galling B. Second-generation antipsychotics and metabolism alterations: A systematic review of the role of the gut microbiome Psychopharmacology 2019 236 1491 151210.1007/s00213-018-5102-6659897130460516Search in Google Scholar

Zhang S., Chen D.C.: Facing a new challenge: The adverse effects of antibiotics on gut microbiota and host immunity. Chin. Med. J., 2019; 132: 1135-1138Zhang S. Chen D.C. Facing a new challenge: The adverse effects of antibiotics on gut microbiota and host immunity Chin. Med. J 2019 132 1135 113810.1097/CM9.0000000000000245651140730973451Search in Google Scholar

Ponziani F.R., Zocco M.A., D’Aversa F., Pompili M., Gasbarrini A.: Eubiotic properties of rifaximin: Disruption of the traditional concepts in gut microbiota modulation. World J. Gastroenterol., 2017; 23: 4491-4499Ponziani F.R. Zocco M.A. D’Aversa F. Pompili M. Gasbarrini A. Eubiotic properties of rifaximin: Disruption of the traditional concepts in gut microbiota modulation World J. Gastroenterol 2017 23 4491 449910.3748/wjg.v23.i25.4491550436428740337Search in Google Scholar

Imhann F., Bonder M.J., Vila A.V., Fu J., Mujagic Z., Vork L., Tigchelaar E.F., Jankipersadsing S.A., Cenit M.C., Harmsen H.J. i wsp.: Proton pump inhibitors affect the gut microbiome. Gut, 2016; 65: 740-748Imhann F. Bonder M.J. Vila A.V. Fu J. Mujagic Z. Vork L. Tigchelaar E.F. Jankipersadsing S.A. Cenit M.C. Harmsen H.J. i wsp. Proton pump inhibitors affect the gut microbiome Gut 2016 65 740 74810.1136/gutjnl-2015-310376485356926657899Search in Google Scholar

Jackson M.A., Goodrich J.K., Maxan M-E., Freedberg D.E., Abrams J.A., Poole A.C., Sutter J.L., Welter D., Ley R.E., Bell J.T. i wsp.: Proton pump inhibitors alter the composition of the gut microbiota. Gut, 2016; 65: 749-756Jackson M.A. Goodrich J.K. Maxan M-E. Freedberg D.E. Abrams J.A. Poole A.C. Sutter J.L. Welter D. Ley R.E. Bell J.T. i wsp. Proton pump inhibitors alter the composition of the gut microbiota Gut 2016 65 749 75610.1136/gutjnl-2015-310861485357426719299Search in Google Scholar

Moayyedi P., Eikelboom J.W., Bosch J., Connolly S.J., Dyal L., Shestakovska O., Leong D., Anand S.S., Störk S., Branch K.R. i wsp.: Safety of proton pump inhibitors based on a large, multiyear, randomized trial of patients receiving rivaroxaban or aspirin. Gastroenterology, 2019; 157: 682-691Moayyedi P. Eikelboom J.W. Bosch J. Connolly S.J. Dyal L. Shestakovska O. Leong D. Anand S.S. Störk S. Branch K.R. i wsp. Safety of proton pump inhibitors based on a large, multiyear, randomized trial of patients receiving rivaroxaban or aspirin Gastroenterology 2019 157 682 69110.1053/j.gastro.2019.05.05631152740Search in Google Scholar

Yepuri G., Sukhovershin R., Nazari-Shafti T.Z., Petrascheck M., Ghebre Y.T., Cooke J.P.: Proton pump inhibitors accelerate endothelial senescence. Circ. Res., 2016; 118: e36-e42Yepuri G. Sukhovershin R. Nazari-Shafti T.Z. Petrascheck M. Ghebre Y.T. Cooke J.P. Proton pump inhibitors accelerate endothelial senescence Circ. Res 2016 118 e36 e4210.1161/CIRCRESAHA.116.308807490274527166251Search in Google Scholar

Forslund K., Hildebrand F., Nielsen T., Falony G., Le Chatelier E., Sunagawa S., Prifti E., Vieira-Silva S., Gudmundsdottir V., Krogh Pedersen H. i wsp.: Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature, 2015; 528: 262-266Forslund K. Hildebrand F. Nielsen T. Falony G. Le Chatelier E. Sunagawa S. Prifti E. Vieira-Silva S. Gudmundsdottir V. Krogh Pedersen H. i wsp. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota Nature 2015 528 262 26610.1038/nature15766468109926633628Search in Google Scholar

Wu H., Esteve E., Tremaroli V., Khan M.T., Caesar R., Mannerås-Holm L., Ståhlman M., Olsson L.M., Serino M., Planas- Fèlix M. i wsp.: Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug. Nat. Med., 2017; 23: 850-858Wu H. Esteve E. Tremaroli V. Khan M.T. Caesar R. Mannerås-Holm L. Ståhlman M. Olsson L.M. Serino M. Planas- Fèlix M. i wsp. Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug Nat. Med 2017 23 850 85810.1038/nm.434528530702Search in Google Scholar

Vieira-Silva S., Falony G., Belda E., Nielsen T., Aron-Wisnewsky J., Chakaroun R., Forslund S., Assmann K., Valles-Colomer M., Nguyen T.T. i wsp.: Statin therapy is associated with lower prevalence of gut microbiota dysbiosis. Nature, 2020; 581: 310-315Vieira-Silva S. Falony G. Belda E. Nielsen T. Aron-Wisnewsky J. Chakaroun R. Forslund S. Assmann K. Valles-Colomer M. Nguyen T.T. i wsp. Statin therapy is associated with lower prevalence of gut microbiota dysbiosis Nature 2020 581 310 31510.1038/s41586-020-2269-x32433607Search in Google Scholar

Noh K., Kang Y.R., Nepal M.R., Shakya R., Kang M.J., Kang W., Lee S., Jeong H.G., Jeong T.C.: Impact of gut microbiota on drug metabolism: An update for safe and effective use of drugs. Arch. Pharm. Res., 2017; 40: 1345-1355Noh K. Kang Y.R. Nepal M.R. Shakya R. Kang M.J. Kang W. Lee S. Jeong H.G. Jeong T.C. Impact of gut microbiota on drug metabolism: An update for safe and effective use of drugs Arch. Pharm. Res 2017 40 1345 135510.1007/s12272-017-0986-y29181640Search in Google Scholar

Lauschke V.M., Ingelman-Sundberg M.: Prediction of drug response and adverse drug reactions: From twin studies to Next Generation Sequencing. Eur. J. Pharm. Sci., 2019; 130: 65-77Lauschke V.M. Ingelman-Sundberg M. Prediction of drug response and adverse drug reactions: From twin studies to Next Generation Sequencing Eur. J. Pharm. Sci 2019 130 65 7710.1016/j.ejps.2019.01.02430684656Search in Google Scholar

Sharma A., Buschmann M.M., Gilbert J.A.: Pharmacomicrobiomics: The holy grail to variability in drug response? Clin. Pharmacol. Ther., 2019; 106: 317-328Sharma A. Buschmann M.M. Gilbert J.A. Pharmacomicrobiomics: The holy grail to variability in drug response? Clin Pharmacol. Ther 2019 106 317 32810.1002/cpt.143730937887Search in Google Scholar

Claesson M.J., Clooney A.G., O’Toole P.W.: A clinician’s guide to microbiome analysis. Nat. Rev. Gastroenterol. Hepatol., 2017; 14: 585-595Claesson M.J. Clooney A.G. O’Toole P.W. A clinician’s guide to microbiome analysis Nat. Rev. Gastroenterol. Hepatol 2017 14 585 59510.1038/nrgastro.2017.9728790452Search in Google Scholar

Davenport E.R., Sanders J.G., Song S.J., Amato K.R., Clark A.G., Knight R.: The human microbiome in evolution. BMC Biol., 2017; 15: 127Davenport E.R. Sanders J.G. Song S.J. Amato K.R. Clark A.G. Knight R. The human microbiome in evolution BMC Biol 2017 15 12710.1186/s12915-017-0454-7574439429282061Search in Google Scholar

Arkhipova O.V., Akimenko V.K.: Unsaturated organic acids as terminal electron acceptors for reductase chains of anaerobic bacteria. Mikrobiologiia, 2005; 74: 725-737Arkhipova O.V. Akimenko V.K. Unsaturated organic acids as terminal electron acceptors for reductase chains of anaerobic bacteria Mikrobiologiia 2005 74 725 73710.1007/s11021-005-0116-6Search in Google Scholar

Koppel N., Rekdal V.M., Balskus E.P.: Chemical transformation of xenobiotics by the human gut microbiota. Science, 2017; 356: 1246-1257Koppel N. Rekdal V.M. Balskus E.P. Chemical transformation of xenobiotics by the human gut microbiota Science 2017 356 1246 125710.1126/science.aag2770553434128642381Search in Google Scholar

Clarke G., Sandhu K.V., Griffin B.T., Dinan T.G., Cryan J.F., Hyland N.P.: Gut reactions: Breaking down xenobiotic-microbiome interactions. Pharmacol. Rev., 2019; 71: 198-224Clarke G. Sandhu K.V. Griffin B.T. Dinan T.G. Cryan J.F. Hyland N.P. Gut reactions: Breaking down xenobiotic-microbiome interactions Pharmacol. Rev 2019 71 198 22410.1124/pr.118.01576830890566Search in Google Scholar

Gopalakrishnan V., Spencer C.N., Nezi L., Reuben A., Andrews M.C., Karpinets T.V., Prieto P.A., Vicente D., Hoffman K., Wei S.C. i wsp.: Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science, 2018; 359: 97-103Gopalakrishnan V. Spencer C.N. Nezi L. Reuben A. Andrews M.C. Karpinets T.V. Prieto P.A. Vicente D. Hoffman K. Wei S.C. i wsp. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients Science 2018 359 97 10310.1126/science.aan4236582796629097493Search in Google Scholar

Routy B., Le Chatelier E., Derosa L., Duong C.P., Alou M.T., Daillère R., Fluckiger A., Messaoudene M., Rauber C., Roberti M.P. i wsp.: Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science, 2018; 359: 91-97Routy B. Le Chatelier E. Derosa L. Duong C.P. Alou M.T. Daillère R. Fluckiger A. Messaoudene M. Rauber C. Roberti M.P. i wsp. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors Science 2018 359 91 9710.1126/science.aan370629097494Search in Google Scholar

Hubbard T.D., Murray I.A., Perdew G.H.: Indole and tryptophan metabolism: Endogenous and dietary routes to Ah receptor activation. Drug Metab. Dispos., 2015; 43: 1522-1535Hubbard T.D. Murray I.A. Perdew G.H. Indole and tryptophan metabolism: Endogenous and dietary routes to Ah receptor activation Drug Metab. Dispos 2015 43 1522 153510.1124/dmd.115.064246457667326041783Search in Google Scholar

Jin U.H., Lee S.O., Sridharan G., Lee K., Davidson L.A., Jayaraman A., Chapkin R.S., Alaniz R., Safe S.: Microbiome-derived tryptophan metabolites and their aryl hydrocarbon receptor-dependent agonist and antagonist activities. Mol. Pharmacol., 2014; 85: 777-788Jin U.H. Lee S.O. Sridharan G. Lee K. Davidson L.A. Jayaraman A. Chapkin R.S. Alaniz R. Safe S. Microbiome-derived tryptophan metabolites and their aryl hydrocarbon receptor-dependent agonist and antagonist activities Mol. Pharmacol 2014 85 777 78810.1124/mol.113.091165399001424563545Search in Google Scholar

Venkatesh M., Mukherjee S., Wang H., Li H., Sun K., Benechet A.P., Qiu Z., Maher L., Redinbo M.R., Phillips R.S. i wsp.: Symbiotic bacterial metabolites regulate gastrointestinal barrier function via the xenobiotic sensor PXR and Toll-like receptor 4. Immunity, 2014; 41: 296-310Venkatesh M. Mukherjee S. Wang H. Li H. Sun K. Benechet A.P. Qiu Z. Maher L. Redinbo M.R. Phillips R.S. i wsp. Symbiotic bacterial metabolites regulate gastrointestinal barrier function via the xenobiotic sensor PXR and Toll-like receptor 4 Immunity 2014 41 296 31010.1016/j.immuni.2014.06.014414210525065623Search in Google Scholar

Wallace B.D., Redinbo M.R.: Xenobiotic-sensing nuclear receptors involved in drug metabolism: A structural perspective. Drug Metab. Rev., 2013; 45: 79-100Wallace B.D. Redinbo M.R. Xenobiotic-sensing nuclear receptors involved in drug metabolism: A structural perspective Drug Metab. Rev 2013 45 79 10010.3109/03602532.2012.740049487869423210723Search in Google Scholar

Lee S.H., An J.H., Lee H.J., Jung B.H.: Evaluation of pharmacokinetic differences of acetaminophen in pseudo germ-free rats. Biopharm. Drug Dispos., 2012; 33: 292-303Lee S.H. An J.H. Lee H.J. Jung B.H. Evaluation of pharmacokinetic differences of acetaminophen in pseudo germ-free rats Biopharm. Drug Dispos 2012 33 292 30310.1002/bdd.179922806334Search in Google Scholar

Li H., He J., Jia W.: The influence of gut microbiota on drug metabolism and toxicity. Expert Opin. Drug. Metab. Toxicol., 2016; 12: 31-40Li H. He J. Jia W. The influence of gut microbiota on drug metabolism and toxicity Expert Opin. Drug. Metab. Toxicol 2016 12 31 4010.1517/17425255.2016.1121234568318126569070Search in Google Scholar

Possamai L.A., McPhail M.J., Khamri W., Wu B., Concas D., Harrison M., Williams R., Cox R.D., Cox I.J., Anstee Q.M., Thursz M.R.: The role of intestinal microbiota in murine models of acetaminophen-induced hepatotoxicity. Liver Int., 2015; 35: 764-773Possamai L.A. McPhail M.J. Khamri W. Wu B. Concas D. Harrison M. Williams R. Cox R.D. Cox I.J. Anstee Q.M. Thursz M.R. The role of intestinal microbiota in murine models of acetaminophen-induced hepatotoxicity Liver Int 2015 35 764 77310.1111/liv.12689587351625244648Search in Google Scholar

Sousa T., Yadav V., Zann V., Borde A., Abrahamsson B., Basit A.W.: On the colonic bacterial metabolism of azo-bonded prodrugs of 5-aminosalicylic acid. J. Pharm. Sci., 2014; 103: 3171-3175Sousa T. Yadav V. Zann V. Borde A. Abrahamsson B. Basit A.W. On the colonic bacterial metabolism of azo-bonded prodrugs of 5-aminosalicylic acid J. Pharm. Sci 2014 103 3171 317510.1002/jps.2410325091594Search in Google Scholar

Deloménie C., Fouix S., Longuemaux S., Brahimi N., Bizet C., Picard B., Denamur E., Dupret J.M.: Identification and functional characterization of arylamine N-acetyltransferases in eubacteria: Evidence for highly selective acetylation of 5-aminosalicylic acid. J. Bacteriol., 2001; 183: 3417-3427Deloménie C. Fouix S. Longuemaux S. Brahimi N. Bizet C. Picard B. Denamur E. Dupret J.M. Identification and functional characterization of arylamine N-acetyltransferases in eubacteria: Evidence for highly selective acetylation of 5-aminosalicylic acid J. Bacteriol 2001 183 3417 342710.1128/JB.183.11.3417-3427.20019964011344150Search in Google Scholar

Kaddurah-Daouk R., Baillie R.A., Zhu H., Zeng Z.B., Wiest M.M, Nguyen U.T., Wojnoonski K., Watkins S.M, Trupp M., Krauss R.M.: Enteric microbiome metabolites correlate with response to simvastatin treatment. PLoS One, 2011; 6: e 25482Kaddurah-Daouk R. Baillie R.A. Zhu H. Zeng Z.B. Wiest M.M Nguyen U.T. Wojnoonski K. Watkins S.M Trupp M. Krauss R.M. Enteric microbiome metabolites correlate with response to simvastatin treatment PLoS One 2011 6 e 2548210.1371/journal.pone.0025482319275222022402Search in Google Scholar

Yoo D.H., Kim I.S., Van Le T.K., Jung I.H., Yoo H.H., Kim D.H.: Gut microbiota-mediated drug interactions between lovastatin and antibiotics. Drug Metab. Dispos., 2014; 42: 1508-1513Yoo D.H. Kim I.S. Van Le T.K. Jung I.H. Yoo H.H. Kim D.H. Gut microbiota-mediated drug interactions between lovastatin and antibiotics Drug Metab. Dispos 2014 42 1508 151310.1124/dmd.114.05835424947972Search in Google Scholar

Viaud S., Flament C., Zoubir M., Pautier P., LeCesne A., Ribrag V., Soria J.C., Marty V., Vielh P., Robert C. i wsp.: Cyclophosphamide induces differentiation of Th17 cells in cancer patients. Cancer Res. 2011; 71: 661-665Viaud S. Flament C. Zoubir M. Pautier P. LeCesne A. Ribrag V. Soria J.C. Marty V. Vielh P. Robert C. i wsp. Cyclophosphamide induces differentiation of Th17 cells in cancer patients Cancer Res 2011 71 661 66510.1158/0008-5472.CAN-10-125921148486Search in Google Scholar

Viaud S., Saccheri F., Mignot G., Yamazaki T., Daillère R., Hannani D., Enot D.P., Pfirschke C., Engblom C., Pittet M.J. i wsp.: The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science, 2013; 342: 971-976Viaud S. Saccheri F. Mignot G. Yamazaki T. Daillère R. Hannani D. Enot D.P. Pfirschke C. Engblom C. Pittet M.J. i wsp. The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide Science 2013 342 971 97610.1126/science.1240537404894724264990Search in Google Scholar

Roberts A.B., Wallace B.D., Venkatesh M.K., Mani S., Redinbo M.R.: Molecular insights into microbial β-glucuronidase inhibition to abrogate CPT-11 toxicity. Mol. Pharmacol., 2013; 84: 208-217Roberts A.B. Wallace B.D. Venkatesh M.K. Mani S. Redinbo M.R. Molecular insights into microbial β-glucuronidase inhibition to abrogate CPT-11 toxicity Mol. Pharmacol 2013 84 208 21710.1124/mol.113.085852371632623690068Search in Google Scholar

Saitta K.S., Zhang C., Lee K.K., Fujimoto K., Redinbo M.R., Boelsterli U.A.: Bacterial β-glucuronidase inhibition protects mice against enteropathy induced by indomethacin, ketoprofen or diclofenac: Mode of action and pharmacokinetics. Xenobiotica, 2014; 44: 28-35Saitta K.S. Zhang C. Lee K.K. Fujimoto K. Redinbo M.R. Boelsterli U.A. Bacterial β-glucuronidase inhibition protects mice against enteropathy induced by indomethacin, ketoprofen or diclofenac: Mode of action and pharmacokinetics Xenobiotica 2014 44 28 3510.3109/00498254.2013.811314397261723829165Search in Google Scholar

Choi M.S., Yu J.S., Yoo H.H., Kim D.H.: The role of gut microbiota in the pharmacokinetics of antihypertensive drugs. Pharmacol. Res., 2018; 130: 164-171Choi M.S. Yu J.S. Yoo H.H. Kim D.H. The role of gut microbiota in the pharmacokinetics of antihypertensive drugs Pharmacol. Res 2018 130 164 17110.1016/j.phrs.2018.01.01929391236Search in Google Scholar

Haiser H.J., Gootenberg D.B., Chatman K., Sirasani G., Balskus E.P., Turnbaugh P.J.: Predicting and manipulating cardiac drug inactivation by the human gut bacterium Eggerthella lenta. Science, 2013; 341: 295-298Haiser H.J. Gootenberg D.B. Chatman K. Sirasani G. Balskus E.P. Turnbaugh P.J. Predicting and manipulating cardiac drug inactivation by the human gut bacterium Eggerthella lenta Science 2013 341 295 29810.1126/science.1235872373635523869020Search in Google Scholar

Haiser H.J., Seim K.L., Balskus E.P., Turnbaugh P.J.: Mechanistic insight into digoxin inactivation by Eggerthella lenta augments our understanding of its pharmacokinetics. Gut Microbes, 2014; 5: 233-238Haiser H.J. Seim K.L. Balskus E.P. Turnbaugh P.J. Mechanistic insight into digoxin inactivation by Eggerthella lenta augments our understanding of its pharmacokinetics Gut Microbes 2014 5 233 23810.4161/gmic.27915406385024637603Search in Google Scholar

Kumar K., Jaiswal S.K., Dhoke G.V., Srivastava G.N., Sharma A.K., Sharma V.K.: Mechanistic and structural insight into promiscuity based metabolism of cardiac drug digoxin by gut microbial enzyme. J. Cell. Biochem., 2018; 119: 5287-5296Kumar K. Jaiswal S.K. Dhoke G.V. Srivastava G.N. Sharma A.K. Sharma V.K. Mechanistic and structural insight into promiscuity based metabolism of cardiac drug digoxin by gut microbial enzyme J. Cell. Biochem 2018 119 5287 529610.1002/jcb.2663829274283Search in Google Scholar

Hashim H., Azmin S., Razlan H., Yahya N.W., Tan H.J., Manaf M.R., Ibrahim N.M.: Eradication of Helicobacter pylori infection improves levodopa action, clinical symptoms and quality of life in patients with Parkinson’s disease. PLoS One, 2014; 9: e112330Hashim H. Azmin S. Razlan H. Yahya N.W. Tan H.J. Manaf M.R. Ibrahim N.M. Eradication of Helicobacter pylori infection improves levodopa action, clinical symptoms and quality of life in patients with Parkinson’s disease PLoS One 2014 9 e11233010.1371/journal.pone.0112330423904925411976Search in Google Scholar

Matuskova Z., Anzenbacher P., Vecera R., Siller M., TlaskalovaHogenova H., Strojil J., Anzenbacherova E.: Effect of Lactobacillus casei on the pharmacokinetics of amiodarone in male Wistar rats. Eur. J. Drug Metab. Pharmacokinet., 2017; 42: 29-36Matuskova Z. Anzenbacher P. Vecera R. Siller M. TlaskalovaHogenova H. Strojil J. Anzenbacherova E. Effect of Lactobacillus casei on the pharmacokinetics of amiodarone in male Wistar rats Eur. J. Drug Metab. Pharmacokinet 2017 42 29 3610.1007/s13318-015-0315-026797809Search in Google Scholar

Nakayama H., Kinouchi T., Kataoka K., Akimoto S., Matsuda Y., Ohnishi Y.: Intestinal anaerobic bacteria hydrolyse sorivudine, producing the high blood concentration of 5-(E)-(2-bromovinyl)uracil that increases the level and toxicity of 5-fluorouracil. Pharmacogenetics, 1997; 7: 35-43Nakayama H. Kinouchi T. Kataoka K. Akimoto S. Matsuda Y. Ohnishi Y. Intestinal anaerobic bacteria hydrolyse sorivudine, producing the high blood concentration of 5-(E)-(2-bromovinyl)uracil that increases the level and toxicity of 5-fluorouracil Pharmacogenetics 1997 7 35 4310.1097/00008571-199702000-000059110360Search in Google Scholar

Okuda H., Ogura K., Kato A., Takubo H., Watabe T.: A possible mechanism of eighteen patient deaths caused by interactions of sorivudine, a new antiviral drug, with oral 5-fluorouracil prodrugs. J. Pharmacol. Exp. Ther., 1998; 287: 791-799Okuda H. Ogura K. Kato A. Takubo H. Watabe T. A possible mechanism of eighteen patient deaths caused by interactions of sorivudine, a new antiviral drug, with oral 5-fluorouracil prodrugs J. Pharmacol. Exp. Ther 1998 287 791 799Search in Google Scholar

Poteres E., Hubert N., Poludasu S., Brigando G., Moore J., Keeler K., Isabelli A., Ibay I.C., Alt L., Pytynia M. i wsp.: Selective regional alteration of the gut microbiota by diet and antibiotics. Front. Physiol., 2020; 11: 797Poteres E. Hubert N. Poludasu S. Brigando G. Moore J. Keeler K. Isabelli A. Ibay I.C. Alt L. Pytynia M. i wsp. Selective regional alteration of the gut microbiota by diet and antibiotics Front. Physiol 2020 11 79710.3389/fphys.2020.00797735840032733284Search in Google Scholar

Stojančević M., Bojić G., Salami H.A., Mikov M.: The influence of intestinal tract and probiotics on the fate of orally administered drugs. Curr. Issues Mol. Biol., 2014; 16: 55-68Stojančević M. Bojić G. Salami H.A. Mikov M. The influence of intestinal tract and probiotics on the fate of orally administered drugs Curr. Issues Mol. Biol 2014 16 55 68Search in Google Scholar

Zeevi D., Korem T., Zmora N., Israeli D., Rothschild D., Weinberger A., Ben-Yacov O., Lador D., Avnit-Sagi T., Lotan-Pompan M. i wsp.: Personalized nutrition by prediction of glycemic responses. Cell, 2015; 163: 1079-1094Zeevi D. Korem T. Zmora N. Israeli D. Rothschild D. Weinberger A. Ben-Yacov O. Lador D. Avnit-Sagi T. Lotan-Pompan M. i wsp. Personalized nutrition by prediction of glycemic responses Cell 2015 163 1079 109410.1016/j.cell.2015.11.00126590418Search in Google Scholar

Wallace B.D., Roberts A.B., Pollet R.M., Ingle J.D., Biernat K.A., Pellock S.J., Venkatesh M.K., Guthrie L., O’Neal S.K., Robinson S.J. i wsp.: Structure and inhibition of microbiome β-glucuronidases essential to the alleviation of cancer drug toxicity. Chem. Biol., 2015; 22: 1238-1249Wallace B.D. Roberts A.B. Pollet R.M. Ingle J.D. Biernat K.A. Pellock S.J. Venkatesh M.K. Guthrie L. O’Neal S.K. Robinson S.J. i wsp. Structure and inhibition of microbiome β-glucuronidases essential to the alleviation of cancer drug toxicity Chem. Biol 2015 22 1238 124910.1016/j.chembiol.2015.08.005457590826364932Search in Google Scholar

eISSN:
1732-2693
Lingua:
Inglese
Frequenza di pubblicazione:
Volume Open
Argomenti della rivista:
Life Sciences, Molecular Biology, Microbiology and Virology, Medicine, Basic Medical Science, Immunology