[
Afsah-hejri, L., Hajeb, P. & Ehsani, R.J. (2020). Application of ozone for degradation of mycotoxins in food: a review. Comprehensive Reviews in Food Science and Food Safety, 19(4), 1777-1808.
]Search in Google Scholar
[
Agathoklfous, E., Saitanis, C.J., Wang, X.N., Watanabe, M. & Koike, T. (2016). A review study on past 40 years of research on effects of tropospheric O3 on belowground structure, functioning, and processes of trees: A linkage with potential ecological implications. Water Air Soil Pollut, 227, 33.
]Search in Google Scholar
[
Agathoklfous, E., Saitanis, C.J. & Koike, T. (2015). Tropospheric O3, the nightmare of wild plants: A review study. Journal of Agricultural Meteorology, 71, 142-152.
]Search in Google Scholar
[
Akbas, M. and Ozdemir, M. (2006). Effect of different ozone treatments on aflatoxin degradation and physicochemical properties of pistachio. Journal of the Science of Food and Agriculture, 86(13), 2099-2104.
]Search in Google Scholar
[
Angelini, G., Ragni, P., Esposito, D., Giardi, P., Pompili, M.L., Moscardelli, R. & Giardi, M.T. (2001). A device to study the effect of space radiation on photosynthesic organizms. Physica Medica, 17, 267-268.
]Search in Google Scholar
[
Berg, G., Kusstatscher, P., Abdelfattah, A., Cernava, T. & Smalla, K. (2021). Microbiome modulation-toward a better understanding of plant microbiome response to microbial inoculants. Frontiers in Microbiology, 12, 650610.
]Search in Google Scholar
[
Botondi, R., Barone, M. & Grasso, C. (2021). A review into the effectiveness of ozone technology for improving the safety and preserving the quality of fresh-cut fruits and vegetables. Foods, 10(4), 748.
]Search in Google Scholar
[
Botondi, R., De Sanctis, F., Moscatelli, N., Vettraino, A.M., Catelli, C. & Mencarelli, F. (2015). Ozone fumigation for safety and quality of wine grapes in postharvest dehydration. Food Chemistry, 188, 641-647.
]Search in Google Scholar
[
Bryant, C., Fuenzalida, T.I., Brothers, N., Mencuccini, M., Sack, L., Binks, O. & Ball, M.C. (2021). Shifting access to pools of shoot water sustains gas exchange and increases stem hydraulic safety during seasonal atmospheric drought. Plant, Cell & Environment, 44, 2898-2911.
]Search in Google Scholar
[
Bussotti, F., Desotgiu, R., Cascio, Ch., Pollastrini, M., Gravano, E., Gerosa, G., Marzuoli, R., Nali, C., Lorenzini, G., Salvatori, E., Manes, Fausto, S. & Reto, M. (2011). Ozone stress in woody plants assessed with chlorophyll a fluorescence. A critical reassessment of existing data. Environmental and Experimental Botany, 73, 19-30.
]Search in Google Scholar
[
Cao, J.L., Zhu, J.G., Zeng, Q. & Li, C.H. (2012). Research advance in the effect of elevated O3 on characteristics of photosynthesis. Journal of Biology, 26, 66-70.
]Search in Google Scholar
[
Chandran, H., Meena, M. & Swapnil, P. (2021). Plant growth-promoting rhizobacteria as a green alternative for sustainable agriculture. Sustainability, 13, 10986.
]Search in Google Scholar
[
Chen, B., Song, Q. & Pan, Q. (2022). Study on Transpiration Water Consumption and Photosynthetic Characteristics of Landscape Tree Species under Ozone Stress. Atmosphere, 13, 1139.
]Search in Google Scholar
[
Chevin, L.-M. & Hoffmann, A.A. (2017). Evolution of phenotypic plasticity in extreme environments. Philosophical Transactions of the Royal Society B, 372, 20160138.
]Search in Google Scholar
[
Choudhury, F.K., Rivero, R.M., Blumwald, E. & Mittler, R. (2017). Reactive Oxygen species, abiotic stress and stress combination. The Plant Journal, 90, 856-867.
]Search in Google Scholar
[
Di Benedetto, N.A., Corbo, M.R., Campaniello, D., Cataldi, M.P., Bevilacqua, A., Sinigaglia, M. & Flagella, Z. (2017). The role of plant growth promoting bacteria in improving nitrogen use efficiency for sustainable crop production: A focus on wheat. AIMS Microbiology, 3, 413-434.
]Search in Google Scholar
[
De Santis, D., Garzoli, S. & Vettraino, A.M. (2021). Effect of gaseous ozone treatment on the aroma and clove rot by fusarium proliferatum during garlic postharvest storage. Heliyon, 7(4), e06634.
]Search in Google Scholar
[
FAOSTAT, (2019). Statistical Databases. Food and Agriculture Organization of the United Nations, Statistics Division, Rome, Italy.
]Search in Google Scholar
[
Feng, Z.Z., Zeng, H.Q., Wang, X.K., Zheng, Q.W. & Feng, Z.W. (2008). Sensitivity of Metasequoia glyptostroboides to ozone stress. Photosynthetica, 46, 463–465.
]Search in Google Scholar
[
Flowers, M.D., Fiscus, E.L., Burkey, K.O., Booker, F.C. & Dubois, J.B. (2007). Photosynthesis, chlorophyll fluorescence, and yield of snap bean (Phaseolus vulgaris) genotypes differing in sensitivity to ozone. Environmental and Experimental Botany, 61, 190-198.
]Search in Google Scholar
[
Glick, B.R. & Gamalero, E. (2021). Recent developments in the study of plant microbiomes. Microorganisms, 9, 1533.
]Search in Google Scholar
[
Grulke, N.E. & Heath, R.L. (2020). Ozone effects on plants in natural ecosystems. Plant Biology, 22(S1), 12–37.
]Search in Google Scholar
[
Guidi, L., Lo Piccolo, E. & Landi, M. (2019). Chlorophyll Fluorescence, Photoinhibition and Abiotic Stress: Does it Make Any Difference the Fact to Be a C3 or C4 Species? Frontiers in Plant Science, 10, 174.
]Search in Google Scholar
[
Guo, C.L. & Jiang, J. (2019). Effect of ozone fumigation on membrane permeability of 13 native tree species. Journal of Green Science and Technology, 1, 118-119.
]Search in Google Scholar
[
Hoshika, Y., Watanabe, M., Inada, N. & Koike, T. (2012). Ozone-induced stomatal sluggishness develops progressively in siebold’s beech (Fagus crenata). Environmental Pollution, 166, 152–156.
]Search in Google Scholar
[
Kalaji, H.M., Schansker, G., Brestic, M., Bussotti, F., Calatayud, A. & Ferroni, L. (2017). Frequently asked questions about chlorophyll fluorescence, the sequel. Photosynthesis Research, 132, 13-66.
]Search in Google Scholar
[
Kalaji H.M., Oukarroum A., Alexandrov V., Kouzmanova M., Brestic M., Zivcak M., Samborska I. A., Cetner M. D., Allakhverdiev S. I. & Goltsev V. (2014). Identification of nutrient deficiency in maize and tomato plants by in vivo chlorophyll a fluorescence measure-ments. Plant Physiology and Biochemistry, 81, 16-25.
]Search in Google Scholar
[
Kalaji H. M., Schansker G., Ladle R. J., Goltsev V., Bosa K., Allakhverdiev S. I., Brestic M., Bussotti F., Calatayud A., Dąbrowski P., Elsheery N. I., Ferroni L., Guidi L., Hogewoning S. W., Jajoo A., Misra A. N., Nebauer S. G., Pancaldi S., Penella C., Poli D. B., Pollastrini M., Romanowska-Duda Z. B., Rutkowska B., Serôdio J., Suresh K., Szulc W., Tambussi E., Yanniccari M. & Zivcak M. (2014). Frequently asked questions about in vivo chlorophyll fluorescence: practical issues. Photo-synthesis Research, 122, 121-158.
]Search in Google Scholar
[
Khadre, M.A., Yousef, A.E. & Kim, J.-G. (2001). Microbiological aspects of ozone applications in food: a review. Journal of Food Science, 66(9), 1242-1252.
]Search in Google Scholar
[
Köhl, J., Kolnaar, R. & Ravensberg, W.J. (2019). Mode of action of microbial biological control agents against plant diseases: Relevance beyond efficacy. Frontiers in Plant Science, 10, 845.
]Search in Google Scholar
[
Kumar, S.P., Srinivasulu, A. & Raja Babu, K. (2018). Symptomology of major fungal diseases on tomato and its management. Journal of Pharmacognosy and Phytochemistry, 7(6), 1817-1821.
]Search in Google Scholar
[
Lesser, V.M., Rawlings, J.O., Spruill, S.E. & Somerville, M.C. (1990). Ozone effects on agricultural crops: statistical methodologies and estimated dose-response relationships. Crop Science, 30, 148-155.
]Search in Google Scholar
[
Leesutthiphonchai, W., Vu, AL., Ah-Fong, A.M.V. & Judelson, H.S. (2018). How Does Phytophthora infestans Evade Control Efforts? Modern Insight Into the Late Blight Disease. Phytopathology, 108(8), 916-924.
]Search in Google Scholar
[
Li, P., Feng, Z.Z., Shang, B., Yuan, X.Y., Dai, L.L. & Xu, Y.S. (2018). Stomatal characteristics and ozone does-response relationships for six greening tree species. Acta Ecologica Sinica, 38, 2710-2721.
]Search in Google Scholar
[
Li, P., Zhou, H., Xu, Y., Shang, B. & Feng, Z.Z. (2019). The effects of elevated ozone on the accumulation and allocation of poplar biomass depend strongly on water and nitrogen availability. Science of the Total Environment, 665, 929-936.
]Search in Google Scholar
[
Liang, J., Zeng, Q., Zhu, J.G., Xie, Z.B., Liu, G. & Tang, H.Y. (2010). Review of indexes for evaluating plant response to elevated near-surface ozone concentration. Chinese Journal of Eco-Agriculture, 18, 440-445.
]Search in Google Scholar
[
Liu, D.H., Zhao, S.W., Wang, X.Q. & Fan, J.L. (2015). The effect of ozone on the leaf damage symptom and Physiological characteristics of landscape plants. Chinese Ornamental Horticulture Research Progress, 507-512.
]Search in Google Scholar
[
Lutz, S., Thuerig, B., Oberhaensli, T., Mayerhofer, J., Fuchs, J.G., Widmer, F., Freimoser, F.M. & Ahrens, C.H. (2020). Harnessing the microbiomes of suppressive composts for plant protection: From metagenomes to beneficial microorganisms and reliable diagnostics. Frontiers in Microbiology, 11, 1810.
]Search in Google Scholar
[
Maitra, S., Brestic, M., Bhadra, P., Shankar, T., Praharaj, S., Palai, J.B., Shah, M.M.R., Barek, V., Ondrisik, P., Skalický, M., et al. (2022). Bioinoculants-Natural biological resources for sustainable plant production. Microorganisms, 10, 51.
]Search in Google Scholar
[
Makarevitch, I., Waters, A.J., West, P.T., Stitzer, M., Hirsch, C.N., Ross-Ibarra, J. & Springer, N.M. (2015). Transposable elements contribute to activation of maize genes in response to abiotic stress. PLOS Genetics, 11(1), e1004915.
]Search in Google Scholar
[
Manousaridis, G., Nerantzaki, A., Paleologos, E., Tsiotsias, A., Savvaidis, I.N. & Kontominas, M. (2005). Effect of ozone on microbial, chemical and sensory attributes of shucked mussels. Food Microbiology, 22, 1, 1-9.
]Search in Google Scholar
[
Matyseek, R., Sandermann, H., Wieser, G., Booker, F., Cieslik, S., Musselman, R. & Ernst, D. (2008). The challenge of making ozone risk assessment for forest trees more mechanistic. Environmental Pollution, 156, 567–582.
]Search in Google Scholar
[
Menezes-Silva, P.E., Sanglard, L.M., Ávila, R.T., Morais, L.E., Martins, S.C., Nobres, P., Patreze, C.M., Ferreira, M.A., Araújo, W.L. & Fernie, A.R. (2017). Photosynthetic and metabolic acclimation to repeated drought events play key roles in drought tolerance in coffee. Journal of Experimental Botany, 68, 4309-4322.
]Search in Google Scholar
[
Mir, S.A., Shah, M.A., Mir, M.M., Sidiq, T., Sunooj, K.V., Siddiqui, M.W., Marszałek, K. & Khaneghah, A.M. (2023). Recent developments for controlling microbial contamination of nuts. Critical Reviews in Food Science and Nutrition, 63(24), 6710-6722.
]Search in Google Scholar
[
Monks, P. S., Archibald, A. T., Colette, A., Cooper, O., Coyle, M., Derwent, R., ... & Williams, M. L. (2015). Tropospheric ozone and its precursors from the urban to the global scale from air quality to short-lived climate forcer. Atmospheric chemistry and physics, 15(15), 8889-8973.
]Search in Google Scholar
[
Mordente, A., Guantario, B., Meucci, E., Silvestrini, A., Lombardi, E., Martorana, G., & Bohm, V. (2011). Lycopene and cardiovascular diseases: An update. Current Medicinal Chemistry, 18, 1146-1163.
]Search in Google Scholar
[
Ouf, S.A., Moussa, T.A., Abd-elmegeed, A.M. & Eltahlawy, S.R. (2016). Anti-fungal potential of ozone against some dermatophytes. Brazilian Journal of Microbiology, 47, 3, 697-702.
]Search in Google Scholar
[
Paoletti, E. & Grulke, N. E. (2005). Does living in elevated CO2 ameliorate tree response to ozone? A review on stomatal responses. Environ. Pollut. 2005, 137, 483-493. DOI: 10.1016/j.envpol.2005.01.035
]Search in Google Scholar
[
Paoletti, E. & Grulke, N.E. (2010). Ozone exposure and stomatal sluggishness in different plant physiognomic classes. Environmental Pollution, 158, 2664-2671.
]Search in Google Scholar
[
Paylan, I.C., Erkan, S., Cetinkaya, N., Ergun, M. & Pazarlar, S. (2014). Effects of different treatments on the inactivation of various seedborne viruses in some vegetables. Ozone: Science & Engineering, 36(5), 422-426.
]Search in Google Scholar
[
Piacentini, K.C., Savi, G.D. & Scussel, V.M. (2017). The effect of ozone treatment on species of fusarium growth in malting barley (Hordeum vulgare L.) grains. Quality Assurance and Safety of Crops & Foods, 9(4), 383-389.
]Search in Google Scholar
[
Pleijel, H,, Broberg, M,C,, Uddling, J. & Mills, G. (2018). Current surface ozone concentrations significantly decrease wheat growth, yield and quality. Science of the Total Environment, 613-614, 687-692.
]Search in Google Scholar
[
Pokluda, R,, Ragasová, L., Jurica, M., Kalisz, A., Komorowska, M., Niemiec, M. & Sekara, A. (2021). Effects of growth promoting microorganisms on tomato seedlings growing in different media conditions. PLoS One, 16(11), e0259380.
]Search in Google Scholar
[
Poorter, H., Knopf, O., Wright, I.J., Temme, A.A., Hogewoning, S.W., Graf, A., Cernusak, L.A. & Pons, T.L. (2021). A meta-analysis of responses of C3 plants to atmospheric CO2: Dose–response curves for 85 traits ranging from the molecular to the whole-plant level. New Phytologist, 233, 1560-1596.
]Search in Google Scholar
[
Rachoń, L., Szumiło, G. & Bobryk-Mamczarz, A. (2018). Podatność na choroby grzybowe wybranych genotypów pszenicy ozimej w zależności od poziomu agrotechniki. Agronomy Science, 73, 29-39.
]Search in Google Scholar
[
Radha, B., Sunitha, N. C., Sah, R. P., TP, M. A., Krishna, G. K., Umesh, D. K., ... & Siddique, K. H. (2023). Physiological and molecular implications of multiple abiotic stresses on yield and quality of rice. Frontiers in Plant Science, 13, 996514.
]Search in Google Scholar
[
Rahmati, E., Khoshtaghaza, M.H., Banakar, A. & Ebadi, M.T. (2022). Decontamination technologies for medicinal and aromatic plants: a review. Food Science & Nutrition, 10, 3, 784-799.
]Search in Google Scholar
[
Sahu, S.K., Liu, S.C., Ding, D. & Xing, Y. (2021). Ozone pollution in China: Background and trans-boundary contributions to ozone concentration & related health effects across the country. Science of The Total Environment, 761, 144131.
]Search in Google Scholar
[
Samarah, N., Sulaiman, A., Salem, N.M. & Turina M. (2021). Disinfection treatments eliminated Tomato brown rugose fruit virus in tomato seeds. European Journal of Plant Pathology, 159, 153-162.
]Search in Google Scholar
[
Sarooei, S.J., Abbasi, A., Shaghaghian, S. & Berizi, E. (2019). Effect of ozone as a disinfectant on microbial load and chemical quality of raw wheat germ. Ozone: Science & Engineering, 41(6), 562-570.
]Search in Google Scholar
[
Savi, G. D., Gomes, T., Canever, S. B., Feltrin, A. C., Piacentini, K. C., Scussel, R., ... & Angioletto, E. (2020). Application of ozone on rice storage: A mathematical modeling of the ozone spread, effects in the decontamination of filamentous fungi and quality attributes. Journal of Stored Products Research, 87, 101605.
]Search in Google Scholar
[
Sharoni, Y., Linnewiel-Hermione, K., Khanin, M., Salman, H., Veprik, A., Danilenko, M. & Levy, J. (2016). Carotenoids and apocarotenoids in cellular signaling related to cancer: A review. Molecular Nutrition & Food Research, 56, 259-269.
]Search in Google Scholar
[
Stommel, J. R., Dumm, J. M., & Hammond, J. (2021). Effect of ozone on inactivation of purified pepper mild mottle virus and contaminated pepper seed. PhytoFrontiers™, 1(2), 85-93.
]Search in Google Scholar
[
Szpunar-Krok, E., Jańczak-Pieniążek, M., Migut, D., Skrobacz, K., Piechowiak, T., Pawlak, R. & Balawejder, M. (2020). Physiological and Biochemical Properties of Potato (Solanum tuberosum L.) in Response to Ozone-Induced Oxidative Stress. Agronomy, 10, 1745.
]Search in Google Scholar
[
Tzortzakis, N., Singleton, I., & Barnes, J. (2008). Impact of low-level atmospheric ozone-enrichment on black spot and anthracnose rot of tomato fruit. Postharvest Biology and Technology, 47(1), 1-9.
]Search in Google Scholar
[
Uddling, J., Broberg, M. C., Feng, Z., & Pleijel, H. (2018). Crop quality under rising atmospheric CO2. Current Opinion in Plant Biology, 45, 262-267.
]Search in Google Scholar
[
Vallone, L. & Stella, S. (2014). Evaluation of antifungal effect of gaseous ozone in a meat processing plant. Italian Journal of Food Safety, 3(2), 1680.
]Search in Google Scholar
[
Wang, X., Agathokleous, E., Qu, L., Watanabe, M., & Koike, T. (2016). Effects of CO2 and O3 on the interaction between root of woody plants and ectomycorrhizae. Journal of Agricultural Meteorology, 72(2), 95-105.
]Search in Google Scholar
[
Wang, X., Fujita, S., Nakaji, T., Watanabe, M., Satoh, F., & Koike, T. (2016). Fine root turnover of Japanese white birch (Betula platyphylla var. japonica) grown under elevated CO2 in northern Japan. Trees, 30, 363-374.
]Search in Google Scholar
[
Wang, Y., Zhang, Y., Hao, J., & Luo, M. (2011). Seasonal and spatial variability of surface ozone over China: contributions from background and domestic pollution. Atmospheric Chemistry and Physics, 11(7), 3511-3525.
]Search in Google Scholar
[
Wu, Q., Zhang, Y., Xie, M., Zhao, Z., Yang, L., Liu, J. & Hou, D. (2023). Estimation of Fv/Fm in Spring Wheat Using UAV-Based Multispectral and RGB Imagery with Multiple Machine Learning Methods. Agronomy, 13, 1003.
]Search in Google Scholar
[
Xu, Y., Feng, Z., Shang, B., Dai, L., Uddling, J., & Tarvainen, L. (2019). Mesophyll conductance limitation of photosynthesis in poplar under elevated ozone. Science of the Total Environment, 657, 136-145.
]Search in Google Scholar
[
Xu, S., Wang, J., Guo, Z., He, Z., & Shi, S. (2020). Genomic convergence in the adaptation to extreme environments. Plant communications, 1(6), 100117.
]Search in Google Scholar
[
Yuen, J. (2021). Pathogens which threaten food security: Phytophthora infestans, the potato late blight pathogen. Food Security, 13(2), 247-253.
]Search in Google Scholar
[
Zargaran, M., Fatahinia, M., & Mahmoudabadi, A.Z. (2017). The efficacy of gaseous ozone against different forms of Candida albicans. Current medical mycology, 3(2), 26.
]Search in Google Scholar