INFORMAZIONI SU QUESTO ARTICOLO

Cita

Besier, J., & Bruckmaier, R. (2016). Vacuum levels and milk-flow-dependent vacuum drops affect machine milking performance and teat condition in dairy cows. Journal of Dairy Science 99, 3096-3102.10.3168/jds.2015-1034026830741 Search in Google Scholar

Esin, A. (2021). Fluid mechanics in food process engineering. Engineering Principles of Unit Operations in Food Processing. Woodhead Publishing, 167-247. https://doi.org/10.1016/B978-0-12-818473-8.00001-3.10.1016/B978-0-12-818473-8.00001-3 Search in Google Scholar

Gleeson, E., O’Callaghan, E., & Myles, R. (2004). Effect of liner design, pulsator setting, and vacuum level on bovine teat tissue changes and milking characteristics as measured by ultrasonography. Irish Veterinary Journal 57(5), 289-296.10.1186/2046-0481-57-5-289311381721851658 Search in Google Scholar

Golub G., Medvedskyi O., Achkevych V., & Achkevych O. (2018). Establishing rational structural-technological parameters of the milking machine collector. Eastern-European Journal of Enterprise Technologies, 91, 12-17.10.15587/1729-4061.2018.121537 Search in Google Scholar

Gutsol, T.D., Cherenkov, A.D., Avrunin, O.G., & Semenets, V.V. (2019). Analysis of high-power narrowband interference suppression system in radiometric receiver. Telecommunications and Radio Engineering (English translation of Elektrosvyaz and Radiotekhnika), 78(3), 251-260.10.1615/TelecomRadEng.v78.i3.50 Search in Google Scholar

Holst, G., Adrion, F., Umstätter, C., & Bruckmaier, R. (2021). Type of teat cup liner and cluster ventilation affect vacuum conditions in the liner and milking performance in dairy cows. Journal of Dairy Science, 104(4), 4775-4786.10.3168/jds.2020-1977333612232 Search in Google Scholar

Khort, D., Kutyrev, A., Kiktev, N., Hutsol, T., Glowacki, S., Kuboń, M., Nurek, T., Rud, A., & Gródek-Szost, Z. (2022). Automated Mobile Hot Mist Generator: A Quest for Effectiveness in Fruit Horticulture. Sensors, 22(9), 3164.10.3390/s22093164910489535590857 Search in Google Scholar

Kiktev, N., Lendiel, T., Vasilenkov, V., Kapralуuk, O., Hutsol, T., Glowacki, S., Kuboń, M., & Kowalczyk, Z. (2021). Automated Microclimate Regulation in Agricultural Facilities Using the Air Curtain System. Sensors, 21, 8182.10.3390/s21248182870694334960276 Search in Google Scholar

Medvedskyi, O., Kukharets, S., Golub, G., & Dmytriv, V. (2018). Installation of equilibrium pressure of milking machine vacuum system. International Scientific Conference Engineering for Rural Development: conference proceedings. Jelgava: Latvia University of Life Sciences and Technologies, 17, 143-148.10.22616/ERDev2018.17.N173 Search in Google Scholar

Patent 95214 Ukraine. (2011). Teatcup: Patent 95214 Ukraine. 11.07.2011. vol. 13. (In Ukrainian). Search in Google Scholar

Penry, J., Upton, J., Leonard, S., Thompson, P., & Reinemann, D. (2018). A method for assessing teatcup liner performance during the peak milk flow period. Journal of Dairy Science, 101, 649-660.10.3168/jds.2017-1294229102142 Search in Google Scholar

Peychev, K., & Dineva, G. (2020). Study on the effect of the teat reaction on the time components of the pulsogram in various types of milking liners. Research in Agricultural Engineering, 66, 27-32.10.17221/40/2019-RAE Search in Google Scholar

Reinemann, D.J. (2019). Milking Machines and Milking Parlors. Handbook of Farm, Dairy and Food Machinery Engineering (Third Edition), Academic Press, 225-243.10.1016/B978-0-12-814803-7.00010-5 Search in Google Scholar

Upton, J., Penry, J., Rasmussen, M., Thompson, P., Reinemann, D. (2016). Effect of pulsation rest phase duration on teat end congestion. Journal of Dairy Science, 99, 3958-3965.10.3168/jds.2015-1046626947293 Search in Google Scholar