1. bookVolume 66 (2019): Edizione 2 (November 2019)
Dettagli della rivista
License
Formato
Rivista
eISSN
2453-6725
Prima pubblicazione
25 Nov 2011
Frequenza di pubblicazione
2 volte all'anno
Lingue
Inglese
Accesso libero

Tannins, novel inhibitors of the volume regulation and the volume-sensitive anion channel

Pubblicato online: 28 Jan 2020
Volume & Edizione: Volume 66 (2019) - Edizione 2 (November 2019)
Pagine: 37 - 44
Ricevuto: 19 Jun 2019
Accettato: 16 Oct 2019
Dettagli della rivista
License
Formato
Rivista
eISSN
2453-6725
Prima pubblicazione
25 Nov 2011
Frequenza di pubblicazione
2 volte all'anno
Lingue
Inglese

[1] Abdulladzhanova NG, Mavlyanov SM, Dalimov DN. Phenolic Compounds of Euphorbia ferganensis B. Fedtsch. Chem Nat Compd. 2001;37:193–194.10.1023/A:1012303608602 Search in Google Scholar

[2] Akita T, Fedorovich SV, Okada Y. Ca2+ nanodomain-mediated component of swelling-induced volume-sensitive outwardly rectifying anion current triggered by autocrine action of ATP in mouse astrocytes. Cell Physiol Biochem. 2011;28:1181–1190.10.1159/00033586722179006 Search in Google Scholar

[3] Akita T, Okada Y. Characteristics and roles of the volume-sensitive outwardly rectifying (VSOR) anion channel in the central nervous system. Neuroscience. 2014;275:211–231.10.1016/j.neuroscience.2014.06.01524937753 Search in Google Scholar

[4] Alibrahim A, Zhao LY, Bae CY, et al. Neuroprotective effects of volume-regulated anion channel blocker DCPIB on neonatal hypoxic-ischemic injury. Acta Pharmacol Sin. 2013;34:113–118.10.1038/aps.2012.148408649023202801 Search in Google Scholar

[5] Arrazola A, Rota R, Hannaert P, Soler A, Garay RP. Cell volume regulation in rat thymocytes. J Physiol. 1993;465:403–414.10.1113/jphysiol.1993.sp01968311754368229842 Search in Google Scholar

[6] Behravan E, Razavi BM, Hosseinzadeh H. Review of plants and their constituents in the therapy of cerebral ischemia. Phytother Res. 2014;28:1265–1274.10.1002/ptr.518724919707 Search in Google Scholar

[7] Borisova MP, Kataev AA, Sivozhelezov VS. Action of tannin on cellular membranes: Novel insights from concerted studies on lipid bilayers and native cells. Biochim Biophys Acta. 2019;1861:1103–1111.10.1016/j.bbamem.2019.03.01730926363 Search in Google Scholar

[8] Cruz-Rangel S, De Jesus-Perez JJ, Contreras-Vite JA, Perez-Cornejo P, Hartzell HC, Arreola J. Gating modes of calcium-activated chloride channels TMEM16A and TMEM16B. J Physiol. 2015;593:5283–5298.10.1113/JP271256470451326728431 Search in Google Scholar

[9] Delpire E, Gagnon KB. Water Homeostasis and Cell Volume Maintenance and Regulation. Curr Top Membr. 2018;81:3–52.10.1016/bs.ctm.2018.08.001645747430243436 Search in Google Scholar

[10] Deneka D, Sawicka M, Lam AKM, Paulino C, Dutzler R. Structure of a volume-regulated anion channel of the LRRC8 family. Nature. 2018;558:254–259.10.1038/s41586-018-0134-y29769723 Search in Google Scholar

[11] Galvez J, Zarzuelo A, Crespo ME, et al. Antidiarrhoeic activity of Sclerocarya birrea bark extract and its active tannin constituent in rats. Phytother Res. 1991;5:276–278.10.1002/ptr.2650050611 Search in Google Scholar

[12] Han Q, Liu S, Li Z, et al. DCPIB, a potent volume-regulated anion channel antagonist, attenuates microglia-mediated inflammatory response and neuronal injury following focal cerebral ischemia. Brain Res. 2014;1542:176–185.10.1016/j.brainres.2013.10.02624189520 Search in Google Scholar

[13] Hoffmann EK, Holm NB, Lambert IH. Functions of volume-sensitive and calcium-activated chloride channels. IUBMB Life. 2014;66:257–267.10.1002/iub.126624771413 Search in Google Scholar

[14] Islambekov YS, Mavlyanov S, Kamaev FG, Ismailov AI. Phenolic compounds of sumac. Chem Nat Compd. 1994;30:37–39.10.1007/BF00638416 Search in Google Scholar

[15] Kasuya G, Nakane T, Yokoyama T, et al. Cryo-EM structures of the human volume-regulated anion channel LRRC8. Nat Struct Mol Biol. 2018;25:797–804.10.1038/s41594-018-0109-630127360 Search in Google Scholar

[16] Kefauver JM, Saotome K, Dubin AE, et al. Structure of the human volume regulated anion channel. Elife. 2018;7.10.7554/eLife.38461608665730095067 Search in Google Scholar

[17] Kurbannazarova RS, Bessonova SV, Okada Y, Sabirov RZ. Swelling-activated anion channels are essential for volume regulation of mouse thymocytes. Int J Mol Sci. 2011;12:9125–9137.10.3390/ijms12129125325712022272123 Search in Google Scholar

[18] Kurbannazarova RS, Tashmukhamedov BA, Sabirov RZ. Osmotic water permeability and regulatory volume decrease of rat thymocytes. Gen Physiol Biophys. 2003;22:221–232. Search in Google Scholar

[19] Kurbannazarova RS, Tashmukhamedov BA, Sabirov RZ. Role of potassium and chlorine channels in the regulation of thymocyte volume in rats. Bull Exp Biol Med. 2008;145:544–547.10.1007/s10517-008-0152-019145293 Search in Google Scholar

[20] Mavlyanov SM, Islambekov YS, Ismailov AI, Dalimov DN, Abdulladzhanova NG. Vegetable Tanning Agents. Chem Nat Compd. 2001;37:1–24.10.1023/A:1017605223089 Search in Google Scholar

[21] Namkung W, Phuan PW, Verkman AS. TMEM16A inhibitors reveal TMEM16A as a minor component of calcium-activated chloride channel conductance in airway and intestinal epithelial cells. J Biol Chem. 2011;286:2365–2374.10.1074/jbc.M110.175109302353021084298 Search in Google Scholar

[22] Namkung W, Thiagarajah JR, Phuan PW, Verkman AS. Inhibition of Ca2+-activated Cl-channels by gallotannins as a possible molecular basis for health benefits of red wine and green tea. FASEB J. 2010;24:4178–4186.10.1096/fj.10-160648297442220581223 Search in Google Scholar

[23] Okada Y. Volume expansion-sensing outward-rectifier Cl-channel: fresh start to the molecular identity and volume sensor. Am J Physiol. 1997;273:C755–789.10.1152/ajpcell.1997.273.3.C7559316396 Search in Google Scholar

[24] Okada Y, Okada T, Islam MR, Sabirov RZ. Molecular Identities and ATP Release Activities of Two Types of Volume-Regulatory Anion Channels, VSOR and Maxi-Cl. Curr Top Membr. 2018;81:125–176.10.1016/bs.ctm.2018.07.00430243431 Search in Google Scholar

[25] Okada Y, Okada T, Sato-Numata K, et al. Cell Volume-Activated and Volume-Correlated Anion Channels in Mammalian Cells: Their Biophysical, Molecular, and Pharmacological Properties. Pharmacol Rev. 2019;71:49–88.10.1124/pr.118.01591730573636 Search in Google Scholar

[26] Okada Y, Sato K, Toychiev AH, et al. The Puzzles of Volume-Activated Anion Channels. In: Physiology and Pathology of Chloride Transporters and Channels in the Nervous System. San Diego: Elsevier; 2009.10.1016/B978-0-12-374373-2.00015-7 Search in Google Scholar

[27] Okada Y, Shimizu T, Maeno E, Tanabe S, Wang X, Takahashi N. Volume-sensitive chloride channels involved in apoptotic volume decrease and cell death. J Membr Biol. 2006;209:21–29.10.1007/s00232-005-0836-616685598 Search in Google Scholar

[27] Olchowik-Grabarek E, Mavlyanov S, Abdullajanova N, Gieniusz R, Zamaraeva M. Specificity of Hydrolysable Tannins from Rhus typhina L. to Oxidants in Cell and Cell-Free Models. Appl Biochem Biotechnol. 2017;181:495–510.10.1007/s12010-016-2226-127600811 Search in Google Scholar

[29] Pedersen SF, Okada Y, Nilius B. Biophysics and Physiology of the Volume-Regulated Anion Channel (VRAC)/Volume-Sensitive Outwardly Rectifying Anion Channel (VSOR). Pflugers Arch. 2016;468:371–383.10.1007/s00424-015-1781-626739710 Search in Google Scholar

[30] Qiu Z, Dubin AE, Mathur J, et al. SWELL1, a plasma membrane protein, is an essential component of volume-regulated anion channel. Cell. 2014;157:447–458.10.1016/j.cell.2014.03.024402386424725410 Search in Google Scholar

[31] Rice-Evans CA, Miller NJ, Bolwell PG, Bramley PM, Pridham JB. The relative antioxidant activities of plant-derived polyphenolic flavonoids. Free RadicRes. 1995;22:375–383.10.3109/107157695091456497633567 Search in Google Scholar

[32] Rice-Evans CA, Miller NJ, Paganga G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic Biol Med. 1996;20:933–956.10.1016/0891-5849(95)02227-9 Search in Google Scholar

[33] Sabirov RZ, Kurbannazarova RS, Melanova NR, Okada Y. Volume-sensitive anion channels mediate osmosensitive glutathione release from rat thymocytes. PLoS One. 2013;8:e55646.10.1371/journal.pone.0055646 Search in Google Scholar

[34] Sabirov RZ, Merzlyak PG. Plasmalemmal VDAC controversies and maxi-anion channel puzzle. Biochim Biophys Acta. 2012;1818:1570–1580.10.1016/j.bbamem.2011.09.024 Search in Google Scholar

[35] Sabirov RZ, Merzlyak PG, Islam MR, Okada T, Okada Y. The properties, functions, and pathophysiology of maxi-anion channels. Pflugers Arch. 2016;468:405–420.10.1007/s00424-015-1774-5 Search in Google Scholar

[36] Scalbert A. Antimicrobial properties of tannins. Phytochemistry. 1991;30:3875–3883.10.1016/0031-9422(91)83426-L Search in Google Scholar

[37] Soler A, Rota R, Hannaert P, Cragoe EJ, Jr., Garay RP. Volume-dependent K+ and Cl- fluxes in rat thymocytes. J Physiol. 1993;465:387–401.10.1113/jphysiol.1993.sp01968211754358229841 Search in Google Scholar

[38] Szteyn K, Schmid E, Nurbaeva MK, et al. Expression and functional significance of the Ca(2+)-activated Cl(-) channel ANO6 in dendritic cells. Cell Physiol Biochem. 2012;30:1319–1332.10.1159/00034332123159814 Search in Google Scholar

[39] Terra X, Valls J, Vitrac X, et al. Grape-seed procyanidins act as antiinflammatory agents in endotoxin-stimulated RAW 264.7 macrophages by inhibiting NFkB signaling pathway. J AgricFood Chem. 2007;55:4357–4365.10.1021/jf063318517461594 Search in Google Scholar

[40] Voss FK, Ullrich F, Munch J, et al. Identification of LRRC8 heteromers as an essential component of the volume-regulated anion channel VRAC. Science. 2014;344:634–638.10.1126/science.125282624790029 Search in Google Scholar

[41] Wang L, Shen M, Guo X, et al. Volume-sensitive outwardly rectifying chloride channel blockers protect against high glucose-induced apoptosis of cardiomyocytes via autophagy activation. Sci Rep. 2017;7:44265.10.1038/srep44265535397228300155 Search in Google Scholar

[41] Woll KH, Leibowitz MD, Neumcke B, Hille B. A high-conductance anion channel in adult amphibian skeletal muscle. Pflugers Arch. 1987;410:632–640.10.1007/BF005813242453021 Search in Google Scholar

[43] Wong R, Abussaud A, Leung JW, et al. Blockade of the swelling-induced chloride current attenuates the mouse neonatal hypoxic-ischemic brain injury in vivo. Acta Pharmacol Sin. 2018;39:858–865.10.1038/aps.2018.1594391029595192 Search in Google Scholar

[44] Wongsamitkul N, Sirianant L, Muanprasat C, Chatsudthipong V. A plant-derived hydrolysable tannin inhibits CFTR chloride channel: a potential treatment of diarrhea. Pharm Res. 2010;27:490–497.10.1007/s11095-009-0040-y20225391 Search in Google Scholar

[45] Xue Y, Li H, Zhang Y, et al. Natural and synthetic flavonoids, novel blockers of the volume-regulated anion channels, inhibit endothelial cell proliferation. Pflugers Arch. 2018;470:1473–1483.10.1007/s00424-018-2170-829961148 Search in Google Scholar

[46] Zhang Y, Zhang H, Feustel PJ, Kimelberg HK. DCPIB, a specific inhibitor of volume regulated anion channels (VRACs), reduces infarct size in MCAo and the release of glutamate in the ischemic cortical penumbra. Exp Neurol. 2008;210:514–520.10.1016/j.expneurol.2007.11.027236285118206872 Search in Google Scholar

[46] Zhu F, Chu X, Wang H, et al. New Findings on the Effects of Tannic Acid: Inhibition of L-Type Calcium Channels, Calcium Transient and Contractility in Rat Ventricular Myocytes. Phytother Res. 2016;30:510–516.10.1002/ptr.555826762248 Search in Google Scholar

Articoli consigliati da Trend MD

Pianifica la tua conferenza remota con Sciendo