Accesso libero

Impact of nitrate therapy on the expression of caveolin-1 and its phosphorylated isoform in lungs in the model of monocrotaline induced pulmonary hypertension

INFORMAZIONI SU QUESTO ARTICOLO

Cita

[1] Archer, S. L., Weir, E. K., & Wilkins, M. R. (2010). Basic science of pulmonary arterial hypertension for clinicians: new concepts and experimental therapies. Circulation, 121(18), 2045–2066. https://doi.org/10.1161/CIRCULATIONAHA.108.84770710.1161/CIRCULATIONAHA.108.847707Search in Google Scholar

[2] Austin, E. D., Loyd, J. E., & Phillips, J. A. (1993). Heritable Pulmonary Arterial Hypertension. GeneReviews®. University of Washington, Seattle. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/20301658Search in Google Scholar

[3] Clapp, L. H., & Gurung, R. (2015). The mechanistic basis of prostacyclin and its stable analogues in pulmonary arterial hypertension: Role of membrane versus nuclear receptors. Prostaglandins & Other Lipid Mediators, 120, 56–71. https://doi.org/10.1016/j.prostaglandins.2015.04.00710.1016/j.prostaglandins.2015.04.007Search in Google Scholar

[4] Fleming, I., & Busse, R. (1999). Signal transduction of eNOS activation. Cardiovascular Research, 43(3), 532–41. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/1069032510.1016/S0008-6363(99)00094-2Search in Google Scholar

[5] Galiè, N., Humbert, M., Vachiery, J.-L., Gibbs, S., Lang, I., Torbicki, A., … Luis Zamorano, J. (2016). 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension. European Heart Journal, 37(1), 67–119. https://doi.org/10.1093/eurheartj/ehv31710.1093/eurheartj/ehv31726320113Search in Google Scholar

[6] Haga, S., Tsuchiya, H., Hirai, T., Hamano, T., Mimori, A., & Ishizaka, Y. (2015). A novel ACE2 activator reduces monocrotaline-induced pulmonary hypertension by suppressing the JAK/STAT and TGF-β cascades with restored caveolin-1 expression. Experimental Lung Research, 41(1), 21–31. https://doi.org/10.3109/01902148.2014.95914110.3109/01902148.2014.95914125275723Search in Google Scholar

[7] Humbert, M., Sitbon, O., & Simonneau, G. (2004). Treatment of Pulmonary Arterial Hypertension. New England Journal of Medicine, 351(14), 1425–1436. https://doi.org/10.1056/NEJMra04029110.1056/NEJMra04029115459304Search in Google Scholar

[8] Chen, Z., Bakhshi, F. R., Shajahan, A. N., Sharma, T., Mao, M., Trane, A., … Minshall, R. D. (2012). Nitric oxide-dependent Src activation and resultant caveolin-1 phosphorylation promote eNOS/caveolin-1 binding and eNOS inhibition. Molecular Biology of the Cell, 23(7), 1388–1398. https://doi.org/10.1091/mbc.E11-09-081110.1091/mbc.e11-09-0811331580422323292Search in Google Scholar

[9] Chettimada, S., Yang, J., Moon, H., & Jin, Y. (2015). Caveolae, caveolin-1 and cavin-1: Emerging roles in pulmonary hypertension. World Journal of Respirology, 5(2), 126. https://doi.org/10.5320/wjr.v5.i2.12610.5320/wjr.v5.i2.126543809528529892Search in Google Scholar

[10] Klinger, J. R., & Kadowitz, P. J. (2017). The Nitric Oxide Pathway in Pulmonary Vascular Disease. The American Journal of Cardiology, 120(8), S71–S79. https://doi.org/10.1016/j.amjcard.2017.06.01210.1016/j.amjcard.2017.06.01229025573Search in Google Scholar

[11] Lai, Y.-C., Potoka, K. C., Champion, H. C., Mora, A. L., & Gladwin, M. T. (2014). Pulmonary arterial hypertension: the clinical syndrome. Circulation Research, 115(1), 115–30. https://doi.org/10.1161/CIRCRESAHA.115.30114610.1161/CIRCRESAHA.115.301146409668624951762Search in Google Scholar

[12] Lundberg, J. O., Weitzberg, E., & Gladwin, M. T. (2008). The nitrate– nitrite–nitric oxide pathway in physiology and therapeutics. Nature Reviews Drug Discovery, 7(2), 156–167. https://doi.org/10.1038/nrd246610.1038/nrd246618167491Search in Google Scholar

[13] Malikova, E., Galkova, K., Vavrinec, P., Vavrincova-Yaghi, D., Kmecova, Z., Krenek, P., & Klimas, J. (2016). Local and systemic renin-angiotensin system participates in cardiopulmonary-renal interactions in monocrotaline-induced pulmonary hypertension in the rat. Molecular and Cellular Biochemistry, 418(1–2), 147–57. https://doi.org/10.1007/s11010-016-2740-z10.1007/s11010-016-2740-z27344167Search in Google Scholar

[14] Mathew, R. (2011). Cell-specific dual role of caveolin-1 in pulmonary hypertension. Pulmonary Medicine, 2011, 573432. https://doi.org/10.1155/2011/57343210.1155/2011/573432310942221660237Search in Google Scholar

[15] Mathew, R. (2014). Pathogenesis of pulmonary hypertension: a case for caveolin-1 and cell membrane integrity. American Journal of Physiology-Heart and Circulatory Physiology, 306(1), H15–H25. https://doi.org/10.1152/ajpheart.00266.201310.1152/ajpheart.00266.201324163076Search in Google Scholar

[16] Mathew, R., Huang, J., Shah, M., Patel, K., Gewitz, M., & Sehgal, P. B. (2004). Disruption of Endothelial-Cell Caveolin-1α/Raft Scaffolding During Development of Monocrotaline-Induced Pulmonary Hypertension. Circulation, 110(11), 1499–1506. https://doi.org/10.1161/01.CIR.0000141576.39579.2310.1161/01.CIR.0000141576.39579.2315353500Search in Google Scholar

[17] Montani, D., Chaumais, M.-C., Guignabert, C., Günther, S., Girerd, B., Jaïs, X., … Humbert, M. (2014). Targeted therapies in pulmonary arterial hypertension. Pharmacology & Therapeutics, 141(2), 172–191. https://doi.org/10.1016/j.pharmthera.2013.10.00210.1016/j.pharmthera.2013.10.00224134901Search in Google Scholar

[18] Morrell, N. W. (2006). Pulmonary Hypertension Due to BMPR2 Mutation: A New Paradigm for Tissue Remodeling? Proceedings of the American Thoracic Society, 3(8), 680–686. https://doi.org/10.1513/pats.200605-118SF10.1513/pats.200605-118SF17065373Search in Google Scholar

[19] Patel, H. H., Zhang, S., Murray, F., Suda, R. Y. S., Head, B. P., Yokoyama, U., … Insel, P. A. (2007). Increased smooth muscle cell expression of caveolin-1 and caveolae contribute to the pathophysiology of idiopathic pulmonary arterial hypertension. The FASEB Journal, 21(11), 2970–2979. https://doi.org/10.1096/fj.07-8424com10.1096/fj.07-8424com17470567Search in Google Scholar

[20] Thenappan, T., & Weir, E. K. (2017). The Nitric Oxide Pathway—A Potential Target for Precision Medicine in Pulmonary Arterial Hypertension. The American Journal of Cardiology, 120(8), S69– S70. https://doi.org/10.1016/j.amjcard.2017.06.01110.1016/j.amjcard.2017.06.01129025572Search in Google Scholar

[21] Wertz, J. W., & Bauer, P. M. (2008). Caveolin-1 regulates BMPRII localization and signaling in vascular smooth muscle cells. Biochemical and Biophysical Research Communications, 375(4), 557–561. https://doi.org/10.1016/J.BBRC.2008.08.06610.1016/j.bbrc.2008.08.06618725205Search in Google Scholar

[22] Zhao, Y.-Y., Zhao, Y. D., Mirza, M. K., Huang, J. H., Potula, H.-H. S. K., Vogel, S. M., … Malik, A. B. (2009). Persistent eNOS activation secondary to caveolin-1 deficiency induces pulmonary hypertension in mice and humans through PKG nitration. The Journal of Clinical Investigation, 119(7), 2009–18. https://doi.org/10.1172/JCI3333810.1172/JCI33338270185119487814Search in Google Scholar

eISSN:
2453-6725
Lingua:
Inglese
Frequenza di pubblicazione:
2 volte all'anno
Argomenti della rivista:
Pharmacy, other