Accesso libero

Experimental Investigation on Corrosion Behaviour of Heat-Treated API X70 Pipeline Steel

INFORMAZIONI SU QUESTO ARTICOLO

Cita

K. Kofiani, A. Nonn, and T. Wierzbicki, “New calibration method for high and low triaxiality and validation onSENT specimens of API X70,” Int. J. Press. Vessel. Pip., vol. 111–112, pp. 187–201, 2013, doi: 10.1016/j.ijpvp.2013.07.004. Search in Google Scholar

A. Muñoz, J. Genesca, R. Duran, and J. Mendoza, “Mechanism of FeCO3 formation on API X70 pipeline steel in brine solutions containing CO2,” NACE - Int. Corros. Conf. Ser., vol. 2005-April, no. July 2016, 2005, doi: 10.13140/RG.2.1.3814.8085. Search in Google Scholar

M. Mohammadijoo, J. Valloton, L. Collins, H. Henein, and D. G. Ivey, “Characterization of martensite-austenite constituents and micro-hardness in intercritical reheated and coarse-grained heat affected zones of API X70 HSLA steel,” Mater. Charact., vol. 142, pp. 321–331, 2018, doi: 10.1016/j.matchar.2018.05.057. Search in Google Scholar

T. S. Ajmal, S. B. Arya, L. R. Thippeswamy, M. A. Quraishi, and J. Haque, “Influence of green inhibitor on flow-accelerated corrosion of API X70 line pipe steel in synthetic oilfield water,” Corros. Eng. Sci. Technol., vol. 55, no. 6, pp. 487–496, 2020, doi: 10.1080/1478422X.2020.1745355. Search in Google Scholar

S. Arzola-Peralta, J. Mendoza-Flores, R. Duran-Romero, and J. Genesca, “Cathodic kinetics of API X7o pipeline steel corrosion in H2S containing solutions under turbulent flow conditions,” Corros. Eng. Sci. Technol., vol. 41, no. 4, pp. 321–327, 2006, doi: 10.1179/174327806X139117. Search in Google Scholar

S. Y. Shin, B. Hwang, S. Lee, and K. B. Kang, “Effects of notch shape and specimen thickness on drop-weight tear test properties of API X70 and X80 line-pipe steels,” Metall. Mater. Trans. A Phys. Metall. Mater. Sci., vol. 38, no. 3, pp. 537–551, 2007, doi: 10.1007/s11661-006-9073-6. Search in Google Scholar

S. Arzola and J. Genescá, “The effect of H2S concentration on the corrosion behavior of API 5L X-70 steel,” J. Solid State Electrochem., vol. 9, no. 4, pp. 197–200, 2005, doi: 10.1007/s10008-004-0579-9. Search in Google Scholar

S. Arzola, J. Mendoza-Flores, R. Duran-Romero, and J. Genesca, “Electrochemical behavior of API X70 steel in hydrogen sulfide-containing solutions,” Corrosion, vol. 62, no. 5, pp. 433–443, 2006, doi: 10.5006/1.3278280. Search in Google Scholar

M. S. Weglowski et al., “A comprehensive study on the microstructure and mechanical properties of arc girth welded joints of spiral welded high strength API X70 steel pipe,” Arch. Civ. Mech. Eng., vol. 20, no. 1, pp. 1–18, 2020, doi: 10.1007/s43452-020-00018-0. Search in Google Scholar

T. T. Nguyen, H. M. Heo, J. Park, S. H. Nahm, and U. B. Beak, “Fracture properties and fatigue life assessment of API X70 pipeline steel under the effect of an environment containing hydrogen,” J. Mech. Sci. Technol., vol. 35, no. 4, pp. 1445–1455, 2021, doi: 10.1007/s12206-021-0310-0. Search in Google Scholar

L. R. Jacobo, R. García-Hernández, V. H. López-Morelos, and A. Contreras, “Effect of Acicular Ferrite and Bainite in API X70 Steel Obtained After Applying a Heat Treatment on Corrosion and Cracking Behaviour,” Met. Mater. Int., vol. 27, no. 10, pp. 3750–3764, 2021, doi: 10.1007/s12540-020-00805-7. Search in Google Scholar

H. M. Lieth, R. Al-Sabur, R. J. Jassim, and A. Alsahlani, “Enhancement of corrosion resistance and mechanical properties of API 5L X60 steel by heat treatments in different environments,” J. Eng. Res., vol. 9, no. 4 B, pp. 428–440, 2021, doi: 10.36909/jer.14591. Search in Google Scholar

G. Martinez, Ricardo, F. Pulido, Jecsan, et al., “Imidazoline behavior as corrosion inhibitor in the electrochemical characterization of SCC behavior of an API X70 steel exposed to brine solution” Corrosion Reviews 41, no. 4 (2023): 455–471. https://doi.org/10.1515/corrrev-2022-0056. Search in Google Scholar

S. H. M. Anijdan, M. Sabzi, N. Park, and U. Lee, “Sour corrosion performance and sensitivity to hydrogen induced cracking in the X70 pipeline steel: Effect of microstructural variation and pearlite percentage,” Int. J. Press. Vessel. Pip., vol. 199, p. 104759, Oct. 2022, doi: 10.1016/J.IJPVP.2022.104759. Search in Google Scholar

R. Khatib Zadeh Davani et al., “Crystallographic texture and the mechanical properties of API 5L X70 pipeline steel designated for an arctic environment,” Mater. Sci. Eng. A, vol. 889, p. 145849, Jan. 2024, doi: 10.1016/J.MSEA.2023.145849. Search in Google Scholar

Y. Desalegn A., M. G. Jiru, H. G. Lemu, and M. A. Tolcha. “Internal Corrosion Damage Mechanisms of the Underground Ferrous Water Pipelines.” Adv. Sci. Technol. Res. J., vol. 16, no. 3, pp. 111–123, 2022, doi: 10.12913/22998624/149369. Search in Google Scholar

O. O. Temitayo, H. Vawe, J. Johnson, E. Adewole, and O. Ilesanmi, “Investigation on Corrosion Inhibition of Hura Crepitans for 2101 Duplex Stainless Steel in an Acidic Environment,” Adv. Sci. Technol. Res. J., vol. 16, no. 4, pp. 56–63, 2022, doi: 10.12913/22998624/151693. Search in Google Scholar

Atapek, Ş.H., Polat, Ş. & Zor, S. Effect of tempering temperature and microstructure on the corrosion behavior of a tempered steel. Prot Met Phys Chem Surf 49, 240–246 (2013). https://doi.org/10.1134/S2070205113020111. Search in Google Scholar

B. Hwang, Y. G. O. N. Kim, S. Lee, Y. M. I. N. Kim, N. J. Kim, and J. Y. Yoo, “Effective Grain Size and Charpy Impact Properties of High-Toughness X70 Pipeline Steels,” no. August, 2005, doi: 10.1007/s11661-005-0331-9. Search in Google Scholar

M. Alizadeh and S. Bordbar, “Applying a novel heat treatment cycle to modify the microstructure of welded API X70 pipeline steel,” Mater. Lett., vol. 98, pp. 178–181, 2013, doi: 10.1016/j.matlet.2013.02.049. Search in Google Scholar

M. C. Jo et al., “Effects of coiling temperature and pipe-forming strain on yield strength variation after ERW pipe forming of API X70 and X80 linepipe steels,” Mater. Sci. Eng. A, vol. 682, no. November 2016, pp. 304–311, 2017, doi: 10.1016/j.msea.2016.11.065. Search in Google Scholar

O. Ghelloudj et al., “Reliability Estimation of Cracked API 5L X70 Pipeline Steel,” J. Phys. Conf. Ser., vol. 1818, no. 1, p. 9, 2021, doi: 10.1088/1742-6596/1818/1/012164. Search in Google Scholar

L. Sharma and R. Chhibber, “Effect of Heat Treatment on Mechanical Properties and Corrosion Behaviour of API X70 Linepipe Steel in Different Environments,” Trans. Indian Inst. Met., vol. 72, no. 1, pp. 93–110, Jan. 2019, doi: 10.1007/S12666-018-1465-Y/METRICS. Search in Google Scholar

H. Yu, “Influences of microstructure and texture on crack propagation path of X70 acicular ferrite pipeline steel,” J. Univ. Sci. Technol. Beijing Miner. Metall. Mater. (Eng Ed), vol. 15, no. 6, pp. 683–687, 2008, doi: 10.1016/S1005-8850(08)60271-6. Search in Google Scholar

S. I. Lee, S. Y. Lee, S. G. Lee, H. G. Jung, and B. Hwang, “Effect of Strain Aging on Tensile Behavior and Properties of API X60, X70, and X80 Pipeline Steels,” Met. Mater. Int., vol. 24, no. 6, pp. 1221–1231, 2018, doi: 10.1007/s12540-018-0173-9. Search in Google Scholar

T. M. Ike, O. Adedipe, M. S. Abolarin, and S. A. Lawal, “Mechanical Characterization of Welded API X70 Steel Exposed to Air and Seawater: A review,” IOP Conf. Ser. Mater. Sci. Eng., vol. 413, no. 1, 2018, doi: 10.1088/1757-899X/413/1/012034. Search in Google Scholar

L. M. T. Costa, G. N. de Melo, N. A. Castro, and A. J. de A. Buschinelli, “Microstructural characterization of API 5L X65 and X70 steels manufactured by TMCP process,” Tecnol. em Metal. Mater. e Mineração, vol. 19, no. 1, p. e2511, 2022, doi: 10.4322/2176-1523.20222511. Search in Google Scholar

N. Mohamed, I. Jawhar, J. Al-Jaroodi, and L. Zhang, “Sensor network architectures for monitoring underwater pipelines,” Sensors, vol. 11, no. 11, pp. 10738–10764, 2011, doi: 10.3390/s111110738. Search in Google Scholar

W. Zhao, T. Zhang, Y. Wang, J. Qiao, and Z. Wang, “Corrosion failure mechanism of associated gas transmission pipeline,” Materials (Basel)., vol. 11, no. 10, 2018, doi: 10.3390/ma11101935. Search in Google Scholar

M. M. Shaban, A. M. Eid, R. K. Farag, N. A. Negm, A. A. Fadda, and M. A. Migahed, “Novel trimeric cationic pyrdinium surfactants as bi-functional corrosion inhibitors and antiscalants for API 5L X70 carbon steel against oilfield formation water,” J. Mol. Liq., vol. 305, p. 112817, 2020, doi: 10.1016/j.molliq.2020.112817. Search in Google Scholar

M. A. Mohtadi-Bonab, J. A. Szpunar, L. Collins, and R. Stankievech, “Evaluation of hydrogen induced cracking behavior of API X70 pipeline steel at different heat treatments,” Int. J. Hydrogen Energy, vol. 39, no. 11, pp. 6076–6088, 2014, doi: 10.1016/j.ijhydene.2014.01.138. Search in Google Scholar

M. Masoumi, L. Flavio, G. Herculano, H. Ferreira, and G. De Abreu, “Materials Science & Engineering A Study of texture and microstructure evaluation of steel API 5L X70 under various thermomechanical cycles,” Mater. Sci. Eng. A, vol. 639, pp. 550–558, 2015, doi: 10.1016/j.msea.2015.05.020. Search in Google Scholar

S. H. Mousavi Anijdan, G. Arab, M. Sabzi, M. Sadeghi, A. R. Eivani, and H. R. Jafarian, “Sensitivity to hydrogen induced cracking, and corrosion performance of an API X65 pipeline steel in H2S containing environment: influence of heat treatment and its subsequent microstructural changes,” J. Mater. Res. Technol., vol. 15, pp. 1–16, Nov. 2021, doi: 10.1016/j.jmrt.2021.07.118. Search in Google Scholar

E. S. D. De Oliveira, R. F. Da Costa Pereira, I. R. De Melo, M. A. G. De Andrade Lima, and S. L. U. Filho, “Corrosion behavior of API 5L X80 steel in the produced water of onshore oil recovery facilities,” Mater. Res., vol. 20, pp. 432–439, 2017, doi: 10.1590/1980-5373-mr-2016-0954. Search in Google Scholar

V. Venegas, F. Caleyo, J. L. González, T. Baudin, J. M. Hallen, and R. Penelle, “EBSD study of hydrogen-induced cracking in API-5L-X46 pipeline steel,” Scr. Mater., vol. 52, no. 2, pp. 147–152, 2005, doi: 10.1016/j.scriptamat.2004.09.015. Search in Google Scholar

D. Pérez Escobar, C. Miñambres, L. Duprez, K. Verbeken, and M. Verhaege, “Internal and surface damage of multiphase steels and pure iron after electrochemical hydrogen charging,” Corros. Sci., vol. 53, no. 10, pp. 3166–3176, 2011, doi: 10.1016/j.corsci.2011.05.060. Search in Google Scholar

H. K. Birnbaum and P. Sofronis, “Hydrogen-enhanced localized plasticity-a mechanism for hydrogen-related fracture,” Mater. Sci. Eng. A, vol. 176, no. 1–2, pp. 191–202, 1994, doi: 10.1016/0921-5093(94)90975-X. Search in Google Scholar

G. Ghosh, P. Rostron, R. Garg, and A. Panday, “Hydrogen induced cracking of pipeline and pressure vessel steels: A review,” Eng. Fract. Mech., vol. 199, pp. 609–618, 2018, doi: 10.1016/j.engfracmech.2018.06.018. Search in Google Scholar

M. A. Mohtadi-Bonab, M. Eskandari, and J. A. Szpunar, “Texture, local misorientation, grain boundary and recrystallization fraction in pipeline steels related to hydrogen induced cracking,” Mater. Sci. Eng. A, vol. 620, pp. 97–106, 2015, doi: 10.1016/j.msea.2014.10.009. Search in Google Scholar

M. A. Mohtadi-Bonab, J. A. Szpunar, and S. S. Razavi-Tousi, “A comparative study of hydrogen induced cracking behavior in API 5L X60 and X70 pipeline steels,” Eng. Fail. Anal., vol. 33, pp. 163–175, 2013, doi: 10.1016/j.engfailanal.2013.04.028. Search in Google Scholar

Y. Aprael S., K. R. Abdul-Khalik, and A.A. Khadom. “Effect of CO2 corrosion behavior of mild steel in oilfield produced water.” J. of Loss Prev. in the Proc. Ind., vol. 38, pp. 24–38, 2015, doi: 10.1016/j.jlp.2015.08.003. Search in Google Scholar

eISSN:
2083-4799
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Materials Sciences, Functional and Smart Materials