1. bookVolume 21 (2021): Edizione 4 (December 2021)
Dettagli della rivista
License
Formato
Rivista
eISSN
2083-4799
Prima pubblicazione
23 Sep 2008
Frequenza di pubblicazione
4 volte all'anno
Lingue
Inglese
access type Accesso libero

Microstructure and Mechanical Properties of Laser Surface-Treated Ti13Nb13Zr Alloy with MWCNTs Coatings

Pubblicato online: 30 Dec 2021
Volume & Edizione: Volume 21 (2021) - Edizione 4 (December 2021)
Pagine: 5 - 18
Dettagli della rivista
License
Formato
Rivista
eISSN
2083-4799
Prima pubblicazione
23 Sep 2008
Frequenza di pubblicazione
4 volte all'anno
Lingue
Inglese
Abstract

Laser surface modification of titanium alloys is one of the main methods of improving the properties of titanium alloys used in implantology. This study investigates the microstructural morphology of a laser-modified surface layer on a Ti13Nb13Zr alloy with and without a carbon nanotube coating deposited by electrophoretic deposition. Laser modification was performed for samples with and without carbon nanotube coating for two different laser powers of 800 W and 900 W and for different scan rates: 3 mm/s or 6 mm/s at 25 Hz, and the pulse duration was 2.25 ms or 3.25 ms. A scanning electron microscope SEM was used to evaluate the surface structure of the modified samples. To observe the heat-affected zones of the individual samples, metallographic samples were taken and observed under an optical microscope. Surface wettability tests were performed using a goniometer. A surface roughness test using a profilograph and a nanoindentation test by NanoTest™ Vantage was also performed. Observations of the microstructure allowed to state that for higher laser powers the surfaces of the samples are more homogeneous without defects, while for lower laser powers the path of the laser beam is clearer and more regular. Examination of the microstructure of the cross-sections indicated that the samples on which the carbon nanotube coating was deposited are characterized by a wider heat affected zone, and for the samples modified at 800 W and a feed rate of 3 mm/s the widest heat affected zone is observed. The wettability tests revealed that all the samples exhibit hydrophilic surfaces and the samples with deposited carbon nanotube coating increase it further. Surface roughness testing showed a significant increase in Ra for the laser-modified samples, and the presence of carbon nanotubes further increased this value. Nanoindentation studies showed that the laser modification and the presence of carbon coating improved the mechanical properties of the samples due to their strength.

Keywords

1. Majkowska-Marzec B., Tęczar P., Bartmański M., Bartosewicz B., Jankiewicz B.: Mechanical and Corrosion Properties of Laser Surface-Treated Ti13Nb13Zr Alloy with MWCNTs Coatings, Materials 13 (2020) 1–22. Search in Google Scholar

2. Maleki-Ghaleh H., Khalil-Allafi J.: Characterization, mechanical and in vitro biological behavior of hydroxyapatite titanium carbon nanotube composite coatings deposited on NiTi alloy by electrophoretic deposition, Surface and Coatings Technology 363 (2019) 179–190. Search in Google Scholar

3. Singh S., Singh G., Bala N.: Electrophoretic deposition of hydroxyapatite-iron oxidechitosan composite coatings on Ti13Nb13Zr alloy for biomedical applications, Thin Solid Films 697 (2020) 1–11. Search in Google Scholar

4. Stróż A., Łosiewicz B., Zubko M., Chmiela B., Balin K., Dercz G., Gawlikowski M., Goryczka T.: Production, structure and biocompatible properties of oxide nanotubes on Ti13Nb13Zr alloy for medical applications, Materials Characterization 132 (2017) 363–372. Search in Google Scholar

5. Zieliński A., Jażdżewska M., Łubiński J., Serbiński W.: Effects of Laser Remelting at Cryogenic Conditions on Microstructure and Wear Resistance of the Ti6Al4V Alloy Applied in Medicine, Solid State Phenomena 183 (2012) 215–224. Search in Google Scholar

6. Tęczar P., Majkowska-Marzec B., Bartmański M.: The influence of laser alloying of Ti13Nb13Zr on surface topography and properties, Advances in Material Science 19 (2019) 45–55. Search in Google Scholar

7. Surma K., Adach M., Dębowska M., Turlej P.: Projekt i analiza obliczeniowa implant u krążka przeznaczonego do wytwarzania za pomocą technologii przyrostowych, Aktualne Problemy Biomechaniki (2019) 111–122. Search in Google Scholar

8. Piotrowska K., Madej M., Ozimina D.: Assessment of tribological properties of Ti13Nb13Zr titanium alloy used in medicine. Tribologia 285 (2019) 97–106. Search in Google Scholar

9. Lahiri D., Benaduce A.P., Rouzaud F., Solomon J., Keshri A.K., Kos, L., Agarwal, A.: Wear behavior and in vitro cytotoxicity of wear debris generated from hydroxyapatite-carbon nanotube composite coating. Journal of Biomedical Materials Research 96 (2011) 1–12. Search in Google Scholar

10. Benko A., Przekora A., Wesełucha-Birczyńska A., Nocuń M., Ginalska G., Błażewicz M.: Fabrication of multi-walled carbon nanotube layers with selected properties via electrophoretic deposition: physicochemical and biological characterization, Applied Physics A Materials Science and Processing 122 (2016) 1–13 Search in Google Scholar

11. Serres N., Hlawka F., Costil S., Langlade C., Machi F.: An investigation of the mechanical properties and wear resistance of NiCrBSi coatings carried out by in situ laser remelting, Wear 270 (2011) 640–649. Search in Google Scholar

12. Janiczak R., Pańcikiewicz K.: Laser welding of austenitic ferrofluid container for the KRAKsat satellite, Welding in the World 65 (2021) 1347–1357. Search in Google Scholar

13. Landowski M.: Influence of parameters of laser beam welding on structure of 2205 duplex stainless steel, Advances in Material Science 19 (2019) 21-31. Search in Google Scholar

14. Lisiecki A.: Hybrid Laser Deposition of Composite WC-Ni Layers with Forced Local Cryogenic Cooling, Materials 14 (2021) 1–25. Search in Google Scholar

15. Jażdżewska M.: Effects of CO2 and Nd :YAG laser remelting of the Ti6Al4V alloy on the surface quality and residual stresses, Advances in Material Science 20 (2020) 83–90. Search in Google Scholar

16. Fraczek-Szczypta A., Dlugon E., Weselucha-Birczynska A., Nocun M., Blazewicz M.: Multi walled carbon nanotubes deposited on metal substrate using EPD technique, Journal of Molecular Structure 1040 (2013) 238–245. Search in Google Scholar

17. Verma K., Ayuso L., Wille R.: Parallel simulation of electrophoretic deposition for industrial automotive applications, Proceedings - 2018 International Conference on High Performance Computing and Simulation, HPCS (2018) 468–475.10.1109/HPCS.2018.00080 Search in Google Scholar

18. Raza M.A., Ali A., Ghauri F.A., Aslam A., Yaqoob K., Wasay A., Raffi M.: Electrochemical behavior of graphene coatings deposited on copper metal by electrophoretic deposition and chemical vapor deposition, Surface and Coatings Technology 332 (2017) 112–119. Search in Google Scholar

19. Kumar R., Kuntal K.K., Singh S., Gupta P., Bhushan B., Gopinath P., Lahiri D.: Electrophoretic deposition of hydroxyapatite coating on Mg-3Zn alloy for orthopaedic application, Surface and Coatings Technology 287 (2016) 82–92. Search in Google Scholar

20. Thomas B.J.C., Boccaccini A.R., Shaffer M.S.P.: Multi-walled carbon nanotube coatings using Electrophoretic Deposition (EPD), Journal of the American Ceramic Society 81 (2015) 980–982. Search in Google Scholar

21. Prajapati S.K., Malaiya A., Kesharwani P., Soni D., Jain A.: Biomedical applications and toxicities of carbon nanotubes, Drug and Chemical Toxicology1 (2020) 1–16. Search in Google Scholar

22. Simon J., Flahaut E., Golzio M.: Overview of carbon nanotubes for biomedical applications, Materials 12 (2019) 1–21 Search in Google Scholar

23. Gutiérrez-Hernández J.M., Escobar-García D.M., Escalante A., Flores H., González F.J., Gatenholm P., Toriz G.: In vitro evaluation of osteoblastic cells on bacterial cellulose modified with multi-walled carbon nanotubes as scaffold for bone regeneration, Materials Science and Engineering C 75 (2017) 445–453. Search in Google Scholar

24. Dong Z., Li D., Sun Y., Qian M.: Effects of laser remelting on CNT’s behavior, microstructure and hardness of CNT-doped Fe-base composite, Surface and Coatings Technology 335 (2018) 140–147. Search in Google Scholar

25. Ardila-Rodríguez L.A., Menezes B.R.C., Pereira L.A., Takahashi R.J., Oliveira A.C., Travessa D.N.: Surface modification of aluminum alloys with carbon nanotubes by laser surface melting, Surface and Coatings Technology 377 (2019) 1–11. Search in Google Scholar

26. Tęczar P.: Wpływ modyfikacji laserowej z stopu Ti z powłoką węglową na niektóre własności użytkowe, Master degree thesis, Politechnika Gdańska (2019) 1–74. Search in Google Scholar

27. Rogala-Wielgus D., Majkowska-Marzec B.: Wpływ stopowania laserowego z użyciem nanorurek węglowych stopu Ti13Nb13Zr do zastosowań biomedycznych na jego wybrane własności mechaniczne, Przegląd Spawalnictwa - Welding Technology Review 90 (2018) 18–23. Search in Google Scholar

28. Benko A., Wiecheć A., Rajchel B., Długoń E., Błażewicz M.: Titanium surface modification with carbon nanotubes. Towards improved biocompatibility, Acta Physica Polonica A 129 (2016) 176–178. Search in Google Scholar

29. Majkowska-Marzec B., Rogala-Wielgus D., Bartmański M., Bartosewicz, Zieliński A.: Comparison of Properties of the Hybrid and Bilayer MWCNTs—Hydroxyapatite Coatings on Ti Alloy, Coatings 9 (2019) 643. Search in Google Scholar

30. Heise S., Höhlinger M., Hernández Y.T., Palacio J.J.P.: Rodriquez Ortiz J.A., Wagener V., Virtanen S., Boccaccini A.R.: Electrophoretic deposition and characterization of chitosan/bioactive glass composite coatings on Mg alloy substrates, Electrochimica Acta 232 (2017) 456–464. Search in Google Scholar

Articoli consigliati da Trend MD

Pianifica la tua conferenza remota con Sciendo