Accesso libero

3D-Printed Tool Shoulder Design for the Analogue Modelling of Bobbin Friction Stir Weld Joint Quality

INFORMAZIONI SU QUESTO ARTICOLO

Cita

1. Thomas, W.; Nicholas, E.; Needham, J.; Murch, M.; Temple-Smith, P.; Dawes, C. Friction stir butt welding. International patent application no. PCT/GB92 Patent application 1991.Search in Google Scholar

2. Murr, L.E.; Li, Y.; Trillo, E.A.; Flores, R.D.; McClure, J.C. Microstructures in friction-stir welded metals. Journal of Materials Processing and Manufacturing Science 1998, 7, 145-161.10.1106/X2AA-1046-N9MX-PN69Search in Google Scholar

3. Li, Y.; Murr, L.E.; McClure, J.C. Solid-state flow visualization in the friction-stir welding of 2024 Al to 6061 Al. Scripta Materialia 1999, 40, 1041-1046.10.1016/S1359-6462(99)00062-7Search in Google Scholar

4. Benavides, S.; Li, Y.; Murr, L.; Brown, D.; McClure, J. Low-temperature friction-stir welding of 2024 aluminum. Scripta Materialia 1999, 41, 809-815.10.1016/S1359-6462(99)00226-2Search in Google Scholar

5. Lambiase, F.; Derazkola, H.A.; Simchi, A. Friction Stir Welding and Friction Spot Stir Welding Processes of Polymers—State of the Art. Materials 2020, 13, 2291. https://doi.org/10.3390/ma13102291.10.3390/ma13102291728831732429284Search in Google Scholar

6. Carlone, P.; Palazzo, G. Characterization of TIG and FSW weldings in cast ZE41A magnesium alloy. Journal of Materials Processing Technology 2015, 215, 87-94.10.1016/j.jmatprotec.2014.07.026Search in Google Scholar

7. He, Z.B.; Peng, Y.Y.; Yin, Z.M.; Lei, X.F. Comparison of FSW and TIG welded joints in Al-Mg-Mn-Sc-Zr alloy plates. Transactions of Nonferrous Metals Society of China 2011, 21, 1685-1691.10.1016/S1003-6326(11)60915-1Search in Google Scholar

8. Squillace, A.; De Fenzo, A.; Giorleo, G.; Bellucci, F. A comparison between FSW and TIG welding techniques: Modifications of microstructure and pitting corrosion resistance in AA 2024-T3 butt joints. Journal of Materials Processing Technology 2004, 152, 97-105.10.1016/j.jmatprotec.2004.03.022Search in Google Scholar

9. Tamadon, A.; Pons, D.J.; Clucas, D. AFM characterization of stir-induced micro-flow features within the AA6082-T6 BFSW welds. Technologies 2019, 7, 80.10.3390/technologies7040080Search in Google Scholar

10. Tamadon, A.; Baghestani, A.; Bajgholi, M.E. Influence of WC-based pin tool profile on microstructure and mechanical properties of AA1100 FSW welds. Technologies 2020, 8, 34.10.3390/technologies8020034Search in Google Scholar

11. Sued, M.K.; Pons, D.; Lavroff, J.; Wong, E.H. Design features for bobbin friction stir welding tools: Development of a conceptual model linking the underlying physics to the production process. Materials & Design 2014, 54, 632-643.10.1016/j.matdes.2013.08.057Search in Google Scholar

12. Colligan, K.J. Low-cost friction stir welding of aluminium for littoral combat ship applications. In 8th International Friction Stir Welding Symposium, TWI: Timmendorfer Strand, Germany, 2010.Search in Google Scholar

13. Carstensen, J.; Dos Santos, J.F. Application of FSW and FSSW on advanced automotive structural applications. In 9th International Friction Stir Welding Symposium, Huntsville, USA, 2012.Search in Google Scholar

14. Bordesoules, I.; Bigot, A.; Hantrais, C.; Odievre, T.; Laye, J. Aircracts structural parts demonstrators manufactured using friction stir welding. In 9th International Symposium on Friction Stir Welding, TWI: Huntsville, USA, 2012.Search in Google Scholar

15. Grimm, A.; Schulze, S.; Silva, A.; Göbel, G.; Standfuss, J.; Brenner, B.; Beyer, E.; Füssel, U. Friction stir welding of light metals for industrial applications. Materials Today: Proceedings 2015, 2, S169-S178.10.1016/j.matpr.2015.05.007Search in Google Scholar

16. Tamadon, A.; Pons, D.; Sued, K.; Clucas, D. Formation mechanisms for entry and exit defects in bobbin friction stir welding. Metals 2018, 8, 33.10.3390/met8010033Search in Google Scholar

17. Tamadon, A.; Abdali, M.; Pons, D.; Clucas, D. Characterization of dissimilar Al-Cu BFSW welds; interfacial microstructure, flow mechanism and intermetallics formation. Advances in Materials Science 2020, 20, 52-78.10.2478/adms-2020-0016Search in Google Scholar

18. Tamadon, A.; Pons, D.J.; Clucas, D.; Sued, K. Internal material flow layers in AA6082-T6 butt-joints during bobbin friction stir welding. Metals 2019, 9, 1059.10.3390/met9101059Search in Google Scholar

19. Tamadon, A.; Pons, D.J.; Clucas, D. Flow-based anatomy of bobbin friction-stirred weld; AA6082-T6 aluminium plate and analogue plasticine model. Applied Mechanics 2020, 1, 3-19.10.3390/applmech1010002Search in Google Scholar

20. Tamadon, A.; Pons, D.J.; Clucas, D. Structural anatomy of tunnel void defect in bobbin friction stir welding, elucidated by the analogue modelling. Applied System Innovation 2020, 3, 2.10.3390/asi3010002Search in Google Scholar

21. Tamadon, A.; Pons, D.; Clucas, D. Analogue modelling of flow patterns in bobbin friction stir welding by the dark-field/bright-field illumination method. Advances in Materials Science 2020, 20, 56-70.10.2478/adms-2020-0003Search in Google Scholar

22. Tamadon, A.; Pons, D.; Sued, K.; Clucas, D. Thermomechanical grain refinement in AA6082-T6 thin plates under bobbin friction stir welding. Metals 2018, 8, 375.10.3390/met8060375Search in Google Scholar

23. Padmanaban, G.; Balasubramanian, V. Selection of FSW tool pin profile, shoulder diameter and material for joining AZ31B magnesium alloy–an experimental approach. Materials & Design 2009, 30, 2647-2656.10.1016/j.matdes.2008.10.021Search in Google Scholar

24. Mohanty, H.; Mahapatra, M.; Kumar, P.; Biswas, P.; Mandal, N. Effect of tool shoulder and pin probe profiles on friction stirred aluminum welds—a comparative study. Journal of Marine Science and Application 2012, 11, 200-207.10.1007/s11804-012-1123-4Search in Google Scholar

25. Xu, S.-w.; Deng, X.; Reynolds, A.P.; Seidel, T. Finite element simulation of material flow in friction stir welding. Science and Technology of Welding and Joining 2001, 6, 191-193.10.1179/136217101101538640Search in Google Scholar

26. Seighalani, K.R.; Givi, M.B.; Nasiri, A.; Bahemmat, P. Investigations on the effects of the tool material, geometry, and tilt angle on friction stir welding of pure titanium. Journal of Materials Engineering and Performance 2010, 19, 955-962.10.1007/s11665-009-9582-8Search in Google Scholar

27. Sofuoglu, H.; Rasty, J. Flow behavior of plasticine used in physical modeling of metal forming processes. Tribology International 2000, 33, 523-529.10.1016/S0301-679X(00)00092-XSearch in Google Scholar

28. Wójcik, Ł.; Pater, Z. Physical analysis of cross-wedge rolling process of a stepped shaft. Advances in Science and Technology Research Journal 2017, 11.10.12913/22998624/75966Search in Google Scholar

29. Wójcik, Ł.; Pater, Z.; Bulzak, T.; Tomczak, J. Physical modeling of cross wedge rolling limitations. Materials 2020, 13, 867.10.3390/ma13040867707966232075149Search in Google Scholar

30. Luo, J.; Wang, H.; Chen, W.; Li, L. Study on anti-wear property of 3D printed-tools in friction stir welding by numerical and physical experiments. The International Journal of Advanced Manufacturing Technology 2015, 77, 1781-1791.10.1007/s00170-014-6571-3Search in Google Scholar

31. Tamadon, A.; Pons, D.; Clucas, D. EBSD characterization of bobbin friction stir welding of AA6082-T6 aluminium alloy. Advances in Materials Science 2020, 20, 49-74.10.2478/adms-2020-0022Search in Google Scholar

eISSN:
2083-4799
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Scienze materiali, Materiali funzionali ed intelligenti