Accesso libero

Effect of Trapezoidal Shapes on the Thermal Buckling Behaviour of Perforated Composite Plates

,  e   
30 mar 2021
INFORMAZIONI SU QUESTO ARTICOLO

Cita
Scarica la copertina

1. Shiau L.C, Kuo S.Y, Chen C.Y.: Thermal buckling behaviour of composite laminated plates. Composite Structures 92 (2010) 508–514.10.1016/j.compstruct.2009.08.035Search in Google Scholar

2. Mathew T.C, Singh G., Rao G.V.: Thermal buckling of cross-ply composite laminates. Computers & Structures 42 (2) (1992) 281-287.10.1016/0045-7949(92)90212-ISearch in Google Scholar

3. Manickam G., Bharath A., Das A.N., Chandra A, Barua P.: Thermal buckling behaviour of variable stiffness laminated composite plates. Materials Today Communications 16 (2018) 142-151.10.1016/j.mtcomm.2018.05.003Search in Google Scholar

4. Biswal M., Sahu S., Asha A.: Vibration of composite cylindrical shallow shells subjected to hygrothermal loading-experimental and numerical results. Composites Part B: Engineering 98 (2016) 108-119.10.1016/j.compositesb.2016.05.037Search in Google Scholar

5. Palani G.S., Iyer N.R., Rao T.V.R.: An efficient finite element model for static and vibration analysis of eccentrically stiffened plates/shells. Computers & Structures 43 (4) (1992) 651-661.10.1016/0045-7949(92)90506-USearch in Google Scholar

6. Panda H., Sahu S., Parhi P.: Hygrothermal effects on free vibration of delaminated woven fiber composite plates–Numerical and experimental results. Composite Structures 96 (2013) 502-513.10.1016/j.compstruct.2012.08.057Search in Google Scholar

7. Behera R.K., Sharma N., Parida S.K.: Finite element analysis of buckling, free vibration and flexure of clamped laminated composite plates in variable thermal environment. Advances in Mechanical Engineering (2020) 1151-1161.10.1007/978-981-15-0124-1_102Search in Google Scholar

8. Jeyaraj P.: Buckling and free vibration behaviour of an isotropic plate under non-uniform thermal load. International Journal of Structural Stability and Dynamics 13 (3) (2013) 1250071.10.1142/S021945541250071XSearch in Google Scholar

9. Sai Ram K.S, Sinha P.K.: Hygrothermal effects on the bending characteristics of laminated composite plate. International Journal of Computers and Structures 40 (4) (1991) 1009–1015.10.1016/0045-7949(91)90332-GSearch in Google Scholar

10. Twinkle C.M., Pitchaimani J., Rajamohan V.: Free vibration modes of rectangular plate under nonuniform heating: An experimental investigation. Structures 28 (2020) 1802-1817.10.1016/j.istruc.2020.09.074Search in Google Scholar

11. Yang X., Fei Q., Wu S., Li Y.: Thermal buckling and dynamic characteristics of composite plates under pressure load, Journal of Mechanical Science and Technology 34 (8) (2020) 3117-3125.10.1007/s12206-020-0702-6Search in Google Scholar

12. Abidaa M., Gehringan F., Marsb J., Viveta A., Dammakb F., Haddarc M.: Hygro-mechanical coupling and multiscale swelling coefficients assessment of flax yarns and flax/epoxy composites. Composites Part A 136 (2020) 105914.10.1016/j.compositesa.2020.105914Search in Google Scholar

13. Gayen D., Roy T.: Hygro-thermal effects on stress analysis of tapered laminated composite Beam. International Journal of Composite Materials 3 (3) (2013) 46-55.Search in Google Scholar

14. Biswal M., Sahu S.K., Asha A.V., Namita Nanda.: Hygro-thermal effects on buckling of composite shell-experimental and FEM results. Steel and Composite Structures 22 (6) (2016) 1445-1463.10.12989/scs.2016.22.6.1445Search in Google Scholar

15. Patel B.P., Ganapathi M, Makhecha D.P.: Hygro-thermal effects on the structural behaviour of thick composite laminates using higher-order theory. Composite Structures 56 (2002) 25–34.10.1016/S0263-8223(01)00182-9Search in Google Scholar

16. Sahin O.S.: Thermal buckling of hybrid angle-ply laminated composite plates with a hole. Composites Science and Technology 65 (2005) 1780–1790.10.1016/j.compscitech.2005.03.007Search in Google Scholar

17. Chikh A., Tounsi A., Hebali H., Mahmoud S.R.: Thermal buckling analysis of cross-ply laminated plates using a simplified HSDT. Smart Structures and Systems 19 (3) (2017) 289-297.10.12989/sss.2017.19.3.289Search in Google Scholar

18. Chandrashekhara K.: Thermal buckling of laminated plate using a shear flexible finite element. Finite Elements in Analysis and Design 12 (1992) 51-61.10.1016/0168-874X(92)90006-XSearch in Google Scholar

19. Sun L.X, Hsu T.R.: Thermal buckling of laminated composite plates with transverse shear deformation. Computers & Structures 36 (5) (1990) 883–9.10.1016/0045-7949(90)90159-YSearch in Google Scholar

20. Chockalingam S., Mathew T.C., Singh G., Rao G.V.: Critical temperatures of hybrid laminates using finite elements. Computers & Structures 43 (5) (1992) 995–8.10.1016/0045-7949(92)90313-OSearch in Google Scholar

21. Thangaratnam K.R., Ramachandran J.: Thermal buckling of composite laminated plates. Computers & Structures 32 (1989) 1117–24.10.1016/0045-7949(89)90413-6Search in Google Scholar

22. Chen L.W., Lin P.D., Chen L.Y.: Thermal buckling behaviour of thick composite laminated plates under non-uniform temperature distribution. Computers & Structures 41 (1991) 637–45.10.1016/0045-7949(91)90176-MSearch in Google Scholar

23. Kallannavar V., Kumaran B., Kattimani S.C.: Effect of temperature and moisture on free vibration characteristics of skew laminated hybrid composite and sandwich plates. Thin–Walled Structures 157 (2020) 107113.10.1016/j.tws.2020.107113Search in Google Scholar

24. Thai C.H., Kulasegaram S., Tran L.V., Nguyen-Xuan H.: Generalized shear deformation theory for functionally graded isotropic and sandwich plates based on isogeometric approach. Computers & Structures 141 (2014) 94-112.10.1016/j.compstruc.2014.04.003Search in Google Scholar

25. Nguyen T.N, Thai C.H., Nguyen-Xuan H.: On the general framework of high order shear deformation theories for laminated composite plate structures: A novel unified approach. International Journal of Mechanical Sciences 110 (2016) 242-255.10.1016/j.ijmecsci.2016.01.012Search in Google Scholar

26. Nguyen T.N., Ngo T.D., Nguyen-Xuan H.: A novel three-variable shear deformation plate formulation: Theory and Isogeometric implementation. Computer Methods in Applied Mechanics and Engineering 326 (2017) 376–401.10.1016/j.cma.2017.07.024Search in Google Scholar

27. Bathe K.J.: 2014. Finite Elements Procedures. Second Edi. Prentice Hall, Pearson Education, Inc.Search in Google Scholar

28. Maharudra, B. Arya, Rajanna T.: Effect of ply-orientation and boundary conditions on the vibrational characteristics of laminated composite plates using HOSDT, Materials Today: Proceedings. 20 (2020) 134–139.10.1016/j.matpr.2019.10.062Search in Google Scholar

29. Rajanna T., Banerjee S., Desai Y.M., Prabhakara D. L.: Effects of partial edge loading and fibre configuration on vibration and buckling characteristics of stiffened composite plates. Latin American Journal of Solids and Structures 13 (2016) 854-879.10.1590/1679-78252239Search in Google Scholar

30. Muddappa P.P.Y., Rajanna T., Giridhara G.: Effects of different inter-laminar hybridization and localized edge loads on the vibration and buckling behaviour of fiber metal composite laminates. Composites Part C 4 (2021) 100084.10.1016/j.jcomc.2020.100084Search in Google Scholar

31. Subash Chandra K.S., Rajanna T., Venkata Rao K.: A parametric study on the effect of elliptical cutouts for buckling behaviour of composite plates under non-uniform edge loads. Latin American Journal of Solids and Structures 17 (2020) 1-15.10.1590/1679-78256225Search in Google Scholar

Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Scienze materiali, Materiali funzionali ed intelligenti