Accesso libero

Influence of Stick Electrode Coating’s Moisture Content on the Diffusible Hydrogen in Underwater Wet Shielded Metal Arc Welding

 e    | 31 dic 2020
INFORMAZIONI SU QUESTO ARTICOLO

Cita

1. Fydrych, D., Łabanowski, J., Tomków, J., Rogalski, G. (2015). Cold cracking of underwater wet welded S355G10+N high strength steel. Adv. Mater. Sci. 15 (3), 48-56. https://doi.org/10.1515/adms-2015-001510.1515/adms-2015-0015Search in Google Scholar

2. Świerczyńska, A., Fydrych, D., Rogalski, G. (2017). Diffusible hydrogen management in underwater wet self-shielded flux cored arc welding. Int. J. Hydrogen Energy 42 (38), 24532-24540. https://doi.org/10.1016/j.ijhydene.2017.07.22510.1016/j.ijhydene.2017.07.225Search in Google Scholar

3. Tomków, J., Łabanowski, J., Fydrych, D., Rogalski, G. (2018). Cold cracking of S460N steel in water environment. Pol. Marit. Res. 25 (3), 131-136. https://doi.org/10.2478/pomr-2018-010410.2478/pomr-2018-0104Search in Google Scholar

4. Klett, J., Hecht-Linowitzki, V., Grünzel, O., Schmidt, E., Maier, H.J., Hassel, T. (2020). Effect of the water depth on the hydrogen content in SMAW wet welded joints. SN Appl. Sci. 2, 1269. https://doi.org/10.1007/s42452-020-3066-810.1007/s42452-020-3066-8Search in Google Scholar

5. Tomków, J., Rogalski, G., Fydrych, D., Łabanowski, J. (2018). Improvement of S355G10+N steel weldability in water environment by Temper Bead Welding. J. Mater. Process. Technol., 262, 372–381. https://doi.org/10.1016/j.jmatprotec.2018.06.03410.1016/j.jmatprotec.2018.06.034Search in Google Scholar

6. Menezes, P.H.R., Pessoa, E.C.P., Bracarense, A.Q. (2019). Comparison of underwater wet welding performed with silicate and polymer agglomerated electrodes. J. Mater. Process. Technol., 266, 63–72. https://doi.org/10.1016/j.jmatprotec.2018.10.01910.1016/j.jmatprotec.2018.10.019Search in Google Scholar

7. Santos, V.R., Monteiro, M.J., Rizzo, F.C., Bracarense, A.Q., Pessoa, E.C.P., Marinho, R.R., Vieira, L.A. (2012). Development of an oxyrutile electrode for wet welding. Weld. J., 12, 319–328.Search in Google Scholar

8. Klett, J., Mattos, I.B.F., Maier, H.J., e Silva, R.H.G., Hassel, T. (2020). Control of the diffusible hydrogen content in different steel phases through the targeted use of different welding consumables in underwater wet welding. Mater. Corr. 1–13. https://doi.org/10.1002/maco.20201196310.1002/maco.202011963Search in Google Scholar

9. Klett, J., Hassel, T. (2020). Reducing the risk of hydrogen-induced cold cracks in hyperbaric wet welding of highstrength steels by using austenitic welding consumables. Weld. Cut. 19 (1), 54–60.Search in Google Scholar

10. Rowe, M., Liu, S. (2001). Recent developments in underwater wet welding. Sci. Technol. Weld Joi. 6 (6), 387–396. https://doi.org/10.1179/stw.2001.6.6.38710.1179/stw.2001.6.6.387Search in Google Scholar

11. Li, H., Liu, D., Song, Y., Yan, Y., Guo, N., Feng, J. (2017). Microstructure and mechanical properties of underwater wet welded high-carbon-equivalent steel Q460 using austenitic consumables. J. Mater. Process. Technol. 249 (Supplement C), 149-157. https://doi.org/10.1016/j.jmatprotec.2017.06.00910.1016/j.jmatprotec.2017.06.009Search in Google Scholar

12. Tomków, J., Fydrych, D., Rogalski, G. (2019). Role of Bead Sequence in Underwater Welding. Materials 12, 3372. https://doi.org/10.3390/ma1220337210.3390/ma12203372682935331623063Search in Google Scholar

13. Tomków, J., Rogalski, G., Fydrych, D., Łabanowski, J. (2019). Advantages of the Application of the Temper Bead Welding Technique During Wet Welding. Materials 12, 915. https://doi.org/10.3390/ma1206091510.3390/ma12060915647155630893901Search in Google Scholar

14. Fydrych, D., Świerczyńska, A., Rogalski, G., Łabanowski, J. (2016). Temper Bead Welding of S420G2+M Steel in Water Environment, Adv. Mater. Sci. 16 (4), 5-16. https://doi.org/10.1515/adms-2016-001810.1515/adms-2016-0018Search in Google Scholar

15. Tomków, J., Fydrych, D., Rogalski, G., Łabanowski, J. (2018). Temper Bead Welding of S460N Steel in Wet Welding Conditions. Adv. Mater. Sci. 18 (3), 48-56. https://doi.org/10.1515/adms-2017-003610.1515/adms-2017-0036Search in Google Scholar

16. Reisgen, U., Olschok, S., Lenz, K. (2018). Induktive Wärmenachbehandlung nass unterwassergeschweißter hochfester Feinkornbaustähle. Schweißen Schneiden, 70 (6), 396-403.Search in Google Scholar

17. Brätz, O., Henkel, K.-M., Klett, J., Hassel, T. (2018). Anwendung der Induktion für schweißtechnische Erwärmung beim nassen Lichtbogenhandschweißen unter Wasser. Kolloquium Induktionserwärmung in der schweißtechnischen Fertigung, 2, 29–35.Search in Google Scholar

18. Zhang, H.T., Dai, X.Y., Feng, J.C., Hu, L.L. (2015). Preliminary investigation on real-time induction heating-assisted underwater wet welding. Weld. J. 94 (1), 8-15.Search in Google Scholar

19. Sun, Q.J., Cheng, W.Q., Liu, Y.B., Wang, J.F., Cai, C.W., Feng, J.C. (2016). Microstructure and mechanical properties of ultrasonic assisted underwater wet welding joints. Mater. Des. 103, 63-70. https://doi.org/10.1016/j.matdes.2016.04.01910.1016/j.matdes.2016.04.019Search in Google Scholar

20. Chen, H., Guo, N., Liu, C., Zhang, X., Xu, C., Wang, G. (2020). Insight into hydrostatic pressure effects on diffusible hydrogen content in wet welding joints using in-situ X-ray imaging method. Int. J. Hydrogen Energy 45, 10219-10226. https://doi.org/10.1016/j.ijhydene.2020.01.19510.1016/j.ijhydene.2020.01.195Search in Google Scholar

21. Chen, H., Guo, N., Xu, K., Xu, C., Zhou, L., Wang, G. (2020). In-situ observations of melt degassing and hydrogen removal enhanced by ultrasonics in underwater wet welding. Mater. Des. 188, 108482. https://doi.org/10.1016/j.matdes.2020.10848210.1016/j.matdes.2020.108482Search in Google Scholar

22. Li, H., North, T.H. (1992). Hydrogen Absorption and Hydrogen Cracking in High Strength Weld Metal. Key. Eng. Mater. 69–70, 95–112. https://doi.org/10.4028/www.scientific.net/KEM.69-710.4028/www.scientific.net/KEM.69-70.95Search in Google Scholar

23. Kiefer, J.H. (1996). Effects of Moisture Contamination and Welding Parameters on Diffusible Hydrogen. Weld. J. 75 (5), 155-161.Search in Google Scholar

24. Mutnansky, V. (1983). Shielded gas welding of high-strength martensitic steel. Zvaranie 32 (9), 269-273.Search in Google Scholar

25. Kussike, S.M. (2015). Hydrophobierung von Stabelektroden für das “nasse” Lichtbogenhandschweißen unter Wasser. Ph.D. Thesis, Leibniz Universität Hannover, Germany.Search in Google Scholar

26. Deutscher Verband für Schweißtechnik. (2017). DVS Merkblatt 1818: Ausführung von Lichtbogenschweißarbeiten in nasser Umgebung.Search in Google Scholar

27. Tomków, J., Fydrych, D., Rogalski, G., Łabanowski, J. (2019). Effect of the welding environment and storage time of electrodes on the diffusible hydrogen content in deposited metal. Rev. de Metal. 55 (1), e140. https://doi.org/10.3989/revmetalm.14010.3989/revmetalm.140Search in Google Scholar

28. Mielnicka, K., Wolski, A., Świerczyńska, A., Rogalski, G., Fydrych, D. (2019). Determination of moisture resistance of covered electrodes according to PN-EN ISO 14372. Weld. Tech. Rev. vol. 91 (7), 23-30. https://doi.org/10.26628/wtr.v91i7.104910.26628/wtr.v91i7.1049Search in Google Scholar

29. Tomków, J., Fydrych, D., Wilk, K. (2020). Effect of Electrode Waterproof Coating on Quality of Underwater Wet Welded Joints. Mater. 13 (13), 2947. https://doi.org/10.3390/ma1313294710.3390/ma13132947737238132630224Search in Google Scholar

30. Hecht-Linowitzki, V., Klett, J., Hassel, T. (2016). Automated Underwater Arc Welding. Proceedings of the Symposium on Automated Systems and Technologies, 10/16, 21–26.Search in Google Scholar

31. ISO - International Organization for Standardization. (2018). ISO 3690:2018-07: Welding and Allied Processes - Determination of Hydrogen Content in Arc Weld Metal.Search in Google Scholar

32. Klett, J., Wolf, T., Maier, H.J., Hassel, T. (2020). The Applicability of the Standard DIN EN ISO 3690 for the Analysis of Diffusible Hydrogen Content in Underwater Wet Welding. Materials 13 (17), 3750. https://doi.org/10.3390/ma1317375010.3390/ma13173750750356132854263Search in Google Scholar

33. Ando, S., Asahina, T. (1983). A Study on the Metallurgical Properties of Steel Welds with Underwater Gravity Welding. In Underwater Welding, Proceedings of the International Conference. 255–261.10.1016/B978-0-08-030537-0.50027-2Search in Google Scholar

34. Da Silva, W.C.D., Ribeiro, L.F., Bracarense, A.Q., Pessoa, E.C.P. (2012). Effect of the Hydrostatic Pressure in the Diffusible Hydrogen at the Underwater Wet Welding. Proceedings of the ASME 31st International Conference OMAE2012-83002 No. 44939, 1–8.10.1115/OMAE2012-83002Search in Google Scholar

35. Kong, X., Li, C., Zou, Y., Zhang, J., Hu, Y., Wang, J., Qaddoumi, N., Koh, S.-K., Devlin, J. (2016). Measurement and Analysis of the Diffusible Hydrogen in Underwater Wet Welding Joint. MATEC Web Conf., 39, 03004. https://doi.org/10.1051/matecconf/2016390300410.1051/matecconf/20163903004Search in Google Scholar

36. Moreno-Uribe, A.M., Bracarense, A.Q., Pessoa, E.C.P. (2020). The Effect of Polarity and Hydrostatic Pressure on Operational Characteristics of Rutile Electrode in Underwater Welding. Materials 13, 5001. https://doi.org/10.3390/ma1321500110.3390/ma13215001766429133171956Search in Google Scholar

37. Parshin, S.G., Levchenko, A.M., Maystro, A.S. (2020). Metallurgical Model of Diffusible Hydrogen and Non-Metallic Slag Inclusions in Underwater Wet Welding of High-Strength Steel. Metals 10, 1498. https://doi.org/10.3390/met1011149810.3390/met10111498Search in Google Scholar

eISSN:
2083-4799
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Materials Sciences, Functional and Smart Materials