Accesso libero

Cavitation Erosion and Sliding Wear of MCrAlY and NiCrMo Coatings Deposited by HVOF Thermal Spraying

INFORMAZIONI SU QUESTO ARTICOLO

Cita

1. Krella, A.K.; Zakrzewska, D.E. Cavitation Erosion – Phenomenon and Test Rigs. Adv. Mater. Sci. 2018, 18, 15–26, doi:10.1515/adms-2017-0028.10.1515/adms-2017-0028Search in Google Scholar

2. Brennen, C.E. Cavitation and Bubble Dynamics; Oxford University Press: Oxford, 1995; ISBN 0-19-509409-3.Search in Google Scholar

3. Soyama, H. Cavitation Peening: A Review. Metals 2020, 10, 270, doi:10.3390/met10020270.10.3390/met10020270Search in Google Scholar

4. Dular, M.; Osterman, A. Pit clustering in cavitation erosion. Wear 2008, 265, 811–820, doi:10.1016/j.wear.2008.01.005.10.1016/j.wear.2008.01.005Search in Google Scholar

5. Franc, J.-P.; Michel, J.-M. Fundamentals of Cavitation; Fluid Mechanics and Its Applications; Kluwer Academic Publishers: New York, Boston, Dordrecht, London, Moscow, 2004; Vol. 76; ISBN 90-481-6618-7.Search in Google Scholar

6. Gottardi, G.; Tocci, M.; Montesano, L.; Pola, A. Cavitation erosion behaviour of an innovative aluminium alloy for Hybrid Aluminium Forging. Wear 2018, 394–395, 1–10, doi:10.1016/j.wear.2017.10.009.10.1016/j.wear.2017.10.009Search in Google Scholar

7. Szala, M. Application of computer image analysis software for determining incubation period of cavitation erosion – preliminary results. ITM Web Conf. 2017, 15, 06003, doi:10.1051/itmconf/20171506003.10.1051/itmconf/20171506003Search in Google Scholar

8. Zakrzewska, D.E.; Krella, A.K. Cavitation Erosion Resistance Influence of Material Properties. Adv. Mater. Sci. 2019, 19, 18–34, doi:10.2478/adms-2019-0019.10.2478/adms-2019-0019Search in Google Scholar

9. Lin, J.; Wang, Z.; Cheng, J.; Kang, M.; Fu, X.; Hong, S. Effect of Initial Surface Roughness on Cavitation Erosion Resistance of Arc-Sprayed Fe-Based Amorphous/Nanocrystalline Coatings. Coatings 2017, 7, 200, doi:10.3390/coatings7110200.10.3390/coatings7110200Search in Google Scholar

10. Becker, W.T.; Shipley, R.J. ASM Handbook, Volume 11: Failure Analysis and Prevention; 10 edition.; ASM International: Materials Park, Ohio, 2002; ISBN 978-0-87170-704-8.Search in Google Scholar

11. ASM Handbook Volume 18: Friction, Lubrication, and Wear Technology; ASM Handbook Volume 18:; ASM International, 1992; Vol. 18; ISBN 978-0-87170-380-4.Search in Google Scholar

12. Szala, M.; Szafran, M.; Macek, W.; Marchenko, S.; Hejwowski, T. Abrasion Resistance of S235, S355, C45, AISI 304 and Hardox 500 Steels with Usage of Garnet, Corundum and Carborundum Abrasives. Adv. Sci. Technol. Res. J. 2019, 13, doi:10.12913/22998624/113244.10.12913/22998624/113244Search in Google Scholar

13. Jegadeeswaran, N.; Ramesh, M.R.; Bhat, K.U. Combating Corrosion Degradation of Turbine Materials Using HVOF Sprayed 25% (Cr3C2-25(Ni20Cr)) + NiCrAlY Coating. Int. J. Corros. 2013, 2013, 824659, doi:10.1155/2013/824659.10.1155/2013/824659Search in Google Scholar

14. Szymański, K.; Hernas, A.; Moskal, G.; Myalska, H. Thermally sprayed coatings resistant to erosion and corrosion for power plant boilers - A review. Surf. Coat. Technol. 2015, 268, 153–164, doi:10.1016/j.surfcoat.2014.10.046.10.1016/j.surfcoat.2014.10.046Search in Google Scholar

15. Janicki, D. Microstructure and Sliding Wear Behaviour of In-Situ TiC-Reinforced Composite Surface Layers Fabricated on Ductile Cast Iron by Laser Alloying. Materials 2018, 11, 75, doi:10.3390/ma11010075.10.3390/ma11010075579357329304001Search in Google Scholar

16. Singh, J.; Kumar, S.; Mohapatra, S.K. An erosion and corrosion study on thermally sprayed WCCo-Cr powder synergized with Mo2C/Y2O3/ZrO2 feedstock powders. Wear 2019, 438–439, doi:10.1016/j.wear.2019.01.082.10.1016/j.wear.2019.01.082Search in Google Scholar

17. Singh, G.; Bala, N.; Chawla, V. Microstructural analysis and hot corrosion behavior of HVOF-sprayed Ni-22Cr-10Al-1Y and Ni-22Cr-10Al-1Y-SiC (N) coatings on ASTM-SA213-T22 steel. Int. J. Miner. Metall. Mater. 2020, 27, 401–416, doi:10.1007/s12613-019-1946-y.10.1007/s12613-019-1946-ySearch in Google Scholar

18. Hattori, S.; Mikami, N. Cavitation erosion resistance of stellite alloy weld overlays. Wear 2009, 267, 1954–1960, doi:10.1016/j.wear.2009.05.007.10.1016/j.wear.2009.05.007Search in Google Scholar

19. Szala, M.; Hejwowski, T.; Lenart, I. Cavitation erosion resistance of Ni-Co based coatings. Adv. Sci. Technol. Res. J. 2014, 8, 36–42, doi:10.12913/22998624.1091876.Search in Google Scholar

20. Hejwowski, T. Sliding wear resistance of Fe-, Ni- and Co-based alloys for plasma deposition. Vacuum 2006, 80, 1326–1330, doi:10.1016/j.vacuum.2006.01.037.10.1016/j.vacuum.2006.01.037Search in Google Scholar

21. Maslarevic, A.; Bakic, G.M.; Djukic, M.B.; Rajicic, B.; Maksimovic, V.; Pavkov, V. Microstructure and Wear Behavior of MMC Coatings Deposited by Plasma Transferred Arc Welding and Thermal Flame Spraying Processes. Trans. Indian Inst. Met. 2020, 73, 259–271, doi:10.1007/s12666-019-01831-9.10.1007/s12666-019-01831-9Search in Google Scholar

22. Janicki, D.M. High Power Diode Laser Cladding of Wear Resistant Metal Matrix Composite Coatings. Solid State Phenom. 2013, 199, 587–592, doi:10.4028/www.scientific.net/SSP.199.587.10.4028/www.scientific.net/SSP.199.587Search in Google Scholar

23. Lavigne, S.; Pougoum, F.; Savoie, S.; Martinu, L.; Klemberg-Sapieha, J.E.; Schulz, R. Cavitation erosion behavior of HVOF CaviTec coatings. Wear 2017, 386–387, 90–98, doi:10.1016/j.wear.2017.06.003.10.1016/j.wear.2017.06.003Search in Google Scholar

24. Zhang, P.; Jiang, J.H.; Ma, A.B.; Wang, Z.H.; Wu, Y.P.; Lin, P.H. Cavitation Erosion Resistance of WC-Cr-Co and Cr3C2-NiCr Coatings Prepared by HVOF. Adv. Mater. Res. 2007, 15–17, 199–204, doi:10.4028/www.scientific.net/AMR.15-17.199.10.4028/www.scientific.net/AMR.15-17.199Search in Google Scholar

25. Szala, M.; Hejwowski, T. Cavitation Erosion Resistance and Wear Mechanism Model of Flame-Sprayed Al2O3-40%TiO2/NiMoAl Cermet Coatings. Coatings 2018, 8, 254, doi:10.3390/coatings8070254.10.3390/coatings8070254Search in Google Scholar

26. Taillon, G.; Pougoum, F.; Lavigne, S.; Ton-That, L.; Schulz, R.; Bousser, E.; Savoie, S.; Martinu, L.; Klemberg-Sapieha, J.-E. Cavitation erosion mechanisms in stainless steels and in composite metal–ceramic HVOF coatings. Wear 2016, 364–365, 201–210, doi:10.1016/j.wear.2016.07.015.10.1016/j.wear.2016.07.015Search in Google Scholar

27. Deng, W.; An, Y.; Hou, G.; Li, S.; Zhou, H.; Chen, J. Effect of substrate preheating treatment on the microstructure and ultrasonic cavitation erosion behavior of plasma-sprayed YSZ coatings. Ultrason. Sonochem. 2018, 46, 1–9, doi:10.1016/j.ultsonch.2018.04.004.10.1016/j.ultsonch.2018.04.00429739507Search in Google Scholar

28. Szala, M.; Dudek, A.; Maruszczyk, A.; Walczak, M.; Chmiel, J.; Kowal, M. Effect of atmospheric plasma sprayed TiO2-10% NiAl cermet coating thickness on cavitation erosion, sliding and abrasive wear resistance. Acta Phys. Pol. A 2019, 136, 335–341, doi:10.12693/APhysPolA.136.335.10.12693/APhysPolA.136.335Search in Google Scholar

29. Sugiyama, K.; Nakahama, S.; Hattori, S.; Nakano, K. Slurry wear and cavitation erosion of thermal-sprayed cermets. Wear 2005, 258, 768–775, doi:10.1016/j.wear.2004.09.006.10.1016/j.wear.2004.09.006Search in Google Scholar

30. Łatka, L.; Szala, M.; Michalak, M.; Pałka, T. Impact of atmospheric plasma spray parameters on cavitation erosion resistance of Al2O3-13%TiO2 coatings. Acta Phys. Pol. A 2019, 136, 342–347, doi:10.12693/APhysPolA.136.342.10.12693/APhysPolA.136.342Search in Google Scholar

31. Zhou, W.; Zhou, K.; Li, Y.; Deng, C.; Zeng, K. High temperature wear performance of HVOF-sprayed Cr3C2-WC-NiCoCrMo and Cr3C2-NiCr hardmetal coatings. Appl. Surf. Sci. 2017, 416, 33–44, doi:10.1016/j.apsusc.2017.04.132.10.1016/j.apsusc.2017.04.132Search in Google Scholar

32. Saeidi, S.; Voisey, K.T.; McCartney, D.G. Mechanical Properties and Microstructure of VPS and HVOF CoNiCrAlY Coatings. J. Therm. Spray Technol. 2011, 20, 1231–1243, doi:10.1007/s11666-011-9666-5.10.1007/s11666-011-9666-5Search in Google Scholar

33. Singh, J.; Kumar, S.; Mohapatra, S.K. Tribological performance of Yttrium (III) and Zirconium (IV) ceramics reinforced WC–10Co4Cr cermet powder HVOF thermally sprayed on X2CrNiMo-17-12-2 steel. Ceram. Int. 2019, 45, 23126–23142, doi:10.1016/j.ceramint.2019.08.007.10.1016/j.ceramint.2019.08.007Search in Google Scholar

34. Hong, S.; Wu, Y.; Wang, Q.; Ying, G.; Li, G.; Gao, W.; Wang, B.; Guo, W. Microstructure and cavitation–silt erosion behavior of high-velocity oxygen–fuel (HVOF) sprayed Cr3C2–NiCr coating. Surf. Coat. Technol. 2013, 225, 85–91, doi:10.1016/j.surfcoat.2013.03.020.10.1016/j.surfcoat.2013.03.020Search in Google Scholar

35. Oksa, M.; Turunen, E.; Suhonen, T.; Varis, T.; Hannula, S.-P.; Oksa, M.; Turunen, E.; Suhonen, T.; Varis, T.; Hannula, S.-P. Optimization and Characterization of High Velocity Oxy-fuel Sprayed Coatings: Techniques, Materials, and Applications. Coatings 2011, 1, 17–52, doi:10.3390/coatings1010017.10.3390/coatings1010017Search in Google Scholar

36. Michalak, M.; Łatka, L.; Sokołowski, P.; Niemiec, A.; Ambroziak, A. The Microstructure and Selected Mechanical Properties of Al2O3 + 13 wt % TiO2 Plasma Sprayed Coatings. Coatings 2020, 10, 173, doi:10.3390/coatings10020173.10.3390/coatings10020173Search in Google Scholar

37. Żórawski, W.; Kozerski, S. Scuffing resistance of plasma and HVOF sprayed WC12Co and Cr3C2-25(Ni20Cr) coatings. Surf. Coat. Technol. 2008, 202, 4453–4457, doi:10.1016/j.surfcoat.2008.04.045.10.1016/j.surfcoat.2008.04.045Search in Google Scholar

38. Ozimina, D.; Madej, M.; Kałdoński, T. The Wear Resistance of HVOF Sprayed Composite Coatings. Tribol. Lett. 2011, 41, 103–111, doi:10.1007/s11249-010-9684-3.10.1007/s11249-010-9684-3Search in Google Scholar

39. Benegra, M.; Santana, A.L.B.; Maranho, O.; Pintaude, G. Effect of Heat Treatment on Wear Resistance of Nickel Aluminide Coatings Deposited by HVOF and PTA. J. Therm. Spray Technol. 2015, 24, 1111–1116, doi:10.1007/s11666-015-0266-7.10.1007/s11666-015-0266-7Search in Google Scholar

40. Potthoff, A.; Kratzsch, R.; Barbosa, M.; Kulissa, N.; Kunze, O.; Toma, F.-L. Development and Application of Binary Suspensions in the Ternary System Cr2O3-TiO2-Al2O3 for S-HVOF Spraying. J. Therm. Spray Technol. 2018, 27, 710–717, doi:10.1007/s11666-018-0709-z.10.1007/s11666-018-0709-zSearch in Google Scholar

41. Blum, M.; Krieg, P.; Killinger, A.; Gadow, R.; Luth, J.; Trenkle, F. High Velocity Suspension Flame Spraying (HVSFS) of Metal Suspensions. Materials 2020, 13, 621, doi:10.3390/ma13030621.10.3390/ma13030621704080232019258Search in Google Scholar

42. Tejero-Martin, D.; Pala, Z.; Rushworth, S.; Hussain, T. Splat formation and microstructure of solution precursor thermal sprayed Nb-doped titanium oxide coatings. Ceram. Int. 2020, 46, 5098–5108, doi:10.1016/j.ceramint.2019.10.253.10.1016/j.ceramint.2019.10.253Search in Google Scholar

43. Kiilakoski, J.; Musalek, R.; Lukac, F.; Koivuluoto, H.; Vuoristo, P. Evaluating the toughness of APS and HVOF-sprayed Al2O3-ZrO2-coatings by in-situ- and macroscopic bending. J. Eur. Ceram. Soc. 2018, 38, 1908–1918, doi:10.1016/j.jeurceramsoc.2017.11.056.10.1016/j.jeurceramsoc.2017.11.056Search in Google Scholar

44. Pawłowski, L. 5 - Application of solution precursor spray techniques to obtain ceramic films and coatings. In Future Development of Thermal Spray Coatings; Espallargas, N., Ed.; Woodhead Publishing, 2015; pp. 123–141 ISBN 978-0-85709-769-9.10.1016/B978-0-85709-769-9.00005-1Search in Google Scholar

45. Myalska, H.; Lusvarghi, L.; Bolelli, G.; Sassatelli, P.; Moskal, G. Tribological behavior of WCCo HVAF-sprayed composite coatings modified by nano-sized TiC addition. Surf. Coat. Technol. 2019, 371, 401–416, doi:10.1016/j.surfcoat.2018.09.017.10.1016/j.surfcoat.2018.09.017Search in Google Scholar

46. Vijay, S.; Wang, L.; Lyphout, C.; Nylen, P.; Markocsan, N. Surface characteristics investigation of HVAF sprayed cermet coatings. Appl. Surf. Sci. 2019, 493, 956–962, doi:10.1016/j.apsusc.2019.07.079.10.1016/j.apsusc.2019.07.079Search in Google Scholar

47. Nowak, W.J.; Ochał, K.; Wierzba, P.; Gancarczyk, K.; Wierzba, B. Effect of Substrate Roughness on Oxidation Resistance of an Aluminized Ni-Base Superalloy. Metals 2019, 9, 782, doi:10.3390/met9070782.10.3390/met9070782Search in Google Scholar

48. Szala, M.; Beer-Lech, K.; Gancarczyk, K.; Kilic, O.B.; Pędrak, P.; Özer, A.; Skic, A. Microstructural Characterisation of Co-Cr-Mo Casting Dental Alloys. Adv. Sci. Technol. Res. J. 2017, 11, 76–82, doi:10.12913/22998624/80901.10.12913/22998624/80901Search in Google Scholar

49. Szala, M.; Walczak, M. Cavitation erosion and sliding wear resistance of HVOF coatings. Weld. Technol. Rev. 2018, 90, doi:10.26628/wtr.v90i10.964.10.26628/wtr.v90i10.964Search in Google Scholar

50. ASTM G32-10: Standard Test Method for Cavitation Erosion Using Vibratory Apparatus; ASTM International: West Conshohocken, Philadelphia: PA, USA, 2010;Search in Google Scholar

51. Szala, M.; Walczak, M.; Pasierbiewicz, K.; Kamiński, M. Cavitation Erosion and Sliding Wear Mechanisms of AlTiN and TiAlN Films Deposited on Stainless Steel Substrate. Coatings 2019, 9, 340, doi:10.3390/coatings9050340.10.3390/coatings9050340Search in Google Scholar

52. Davis, J.R. Handbook of Thermal Spray Technology; ASM International: OH, USA, 2004; ISBN 978-0-87170-795-6.Search in Google Scholar

53. Maruszczyk, A.; Dudek, A.; Szala, M. Research into Morphology and Properties of TiO2 – NiAl Atmospheric Plasma Sprayed Coating. Adv. Sci. Technol. Res. J. 2017, 11, 204–210, doi:10.12913/22998624/76450.10.12913/22998624/76450Search in Google Scholar

54. Cabral-Miramontes, J.A.; Gaona-Tiburcio, C.; Almeraya-Calderón, F.; Estupiñan-Lopez, F.H.; Pedraza-Basulto, G.K.; Poblano-Salas, C.A. Parameter Studies on High-Velocity Oxy-Fuel Spraying of CoNiCrAlY Coatings Used in the Aeronautical Industry. Int. J. Corros. 2014, 2014, 703806, doi:10.1155/2014/703806.10.1155/2014/703806Search in Google Scholar

55. Walczak, M.; Pieniak, D.; Niewczas, A.M. Effect of recasting on the useful properties CoCrMoW alloy. Eksploat. Niezawodn. – Maint. Reliab. 2014, 16, 330–336.Search in Google Scholar

eISSN:
2083-4799
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Materials Sciences, Functional and Smart Materials