[1. Kusiński J., Kac S., Kopia A., Radziszewska A., Rozmus-Górnikowska M., Major B., Major L., Marczak J., Lisiecki A.: Laser modification of the materials surface layer – a review paper. Bulletin of the Polish Academy Of Sciences, Technical Sciences, 4 (2012) 711-728.10.2478/v10175-012-0083-9]Search in Google Scholar
[2. Candel J. J., Amigó V.: Recent advances in laser surface treatment of titanium alloys. Journal of Laser Applications, 23 (2011) 1-7.]Search in Google Scholar
[3. Quazi, M. M., Ishak, M., Fazal, M. A., Arslan, A., Rubaiee, S., Aiman, M. H., Sultan T., Manladan, S. M.: A comprehensive assessment of laser welding of biomedical devices and implant materials: recent research, development and applications. Critical Reviews in Solid State and Materials Sciences, (2020) 1-43.]Search in Google Scholar
[4. Götz H.,E., Müller M. Emmel A., Holzwarth U., Erben R.G., Stangl R.: Effect of surface finish on the osteointegration of laser-treated titanium alloy implants. Biomaterials 25 (2004) 4057-4064.]Search in Google Scholar
[5. Tęczar P., Majkowska-Marzec B., Bartmański M.: The influence of laser alloying of Ti13Nb13Zr on surface topography and properties. Advances in Materials Science, 19 (2019) 44-56.]Search in Google Scholar
[6. Majkowska-Marzec, B., Rogala-Wielgus, D., Bartmański, M., Bartosewicz, B., Zieliński, A.: Comparison of properties of the hybrid and bilayer MWCNTs—hydroxyapatite coatings on Ti alloy. Coatings, 9 (2019) 643.]Search in Google Scholar
[7. Landowski, M.: Influence of parameters of laser beam welding on structure of 2205 duplex stainless steel. Advances in Materials Science, 19 (2019) 21-31.]Search in Google Scholar
[8. Zeng, C., Wen, H., Ettefagh, A. H., Zhang, B., Gao, J., Haghshenas, A., Raush J.R. Guo, S. M. (2020). Laser nitriding of titanium surfaces for biomedical applications. Surface and Coatings Technology, 385 (2020) 125397.]Search in Google Scholar
[9. Lisiecki, A.: Study of optical properties of surface layers produced by laser surface melting and laser surface nitriding of titanium alloy. Materials, 12 (2019) 3112]Search in Google Scholar
[10. Yue T.M., Cheung T.M., Man H.C.: The effects of laser surface treatment on the corrosion properties of Ti-6Al-4V alloy in Hank`s solution. Journal Materials Science Letters, 19 (2000) 205-208.]Search in Google Scholar
[11. Yue T.M., Yu J.K., Mei Z., Man H.C.: Excimer laser surface treatment of Ti-6Al-4V alloy for corrosion resistance enhancement. Materials Letters, 52 (2002) 206-212.]Search in Google Scholar
[12. Guillemot F., Prima E., Tokarev V.N., Belin C., Porté-Durrieu M.C., Gloriant T., Baquey Ch., Lazare S.: Ultraviolet laser surface treatment fore biomedical applications of β titanium alloys: morphological and structural characterization. Applied Physics A, 77 (2003) 899-904.]Search in Google Scholar
[13. Sun Z., Annergreen I., Pan D., Mai T.A.: Effect of laser surface remelting on the corrosion behavior of commercially pure titanium sheet. Materials Science and Engineering: A, 345 (2003) 293-300.]Search in Google Scholar
[14. Sušnik J., Sturm R., Grum J.: Influence of laser surface remelting on Al-Si alloy properties. Journal of Mechanical Engineering, 58 (2012) 614-620.]Search in Google Scholar
[15. Temmler A., Walochnik M. A., Willenborg E., Wissenbach K.: Surface structuring by remelting of titanium alloy Ti6Al4V. Journal of Laser Applications, 27 (2015) 29103.]Search in Google Scholar
[16. Grum J., Šturm R.: Residual stress state after the laser surface remelting process. Journal of Materials Engineering and Performance, 10 (2001) 270.]Search in Google Scholar
[17. Šturm R., Grum J.: Influence of laser remelting process on strain and residual stresses in nodular iron. Materials Science Forum, 681 (2011) 188-193]Search in Google Scholar
[18. Yilbas B. S., Akhtar S. S., Matthews A., Karatas C.: Laser remelting of zirconia surface: investigation into stress field and microstructures. Materials and Manufacturing Processes, 26 (2011) 1277-1287.]Search in Google Scholar
[19. Kik, T., & Górka, J.: Numerical simulations of laser and hybrid S700MC T-joint welding. Materials, 12(3) (2019) 516.]Search in Google Scholar
[20. Kik, T.: Computational techniques in numerical simulations of arc and laser welding processes. Materials, 13(3) (2020) 608.]Search in Google Scholar
[21. Grum J., Šturm R.: Influence of laser remelting process parameters on residual stresses in nodular cast iron. Materials and Manufacturing Processes, 15 (2000) 815-827.]Search in Google Scholar
[22. Preußner J., Oeser S., Pfeiffer W., Temmler A., Willenborg E.: Microstructure and residual stresses of laser remelted surfaces of a hot work tool steel. International Journal of Materials Research, 105 (2014) 328-336.]Search in Google Scholar
[23. Bylica A., Bochnowski W., Więcek G.: Residual stresses in the laser remelted C45 steel. Archiwum Odlewnictwa, 6 (2006) 43-48 (in Polish).]Search in Google Scholar
[24. Gusarov A.V., Pavlov M., Smurov I.: Residual stresses at laser surface remelting and additive manufacturing. Physics Procedia, 12 (2011) 248–254.]Search in Google Scholar
[25. Majkowska B., Serbiński W.: Analysis of residual stresses in laser remelted surface layer of the SUPERSTON alloy for ship propellers. Inżynieria Materiałowa 6 (2009) 501-504 (in Polish).]Search in Google Scholar
[26. Serbiński W., Olive J. M., Rudnicki J.: Laser surface treatment of aluminium-silicon alloy at cryogenic conditions. Advances in Materials Science, 3 (2003) 51-59]Search in Google Scholar
[27. Majkowska B., Serbiński W.: Microstructure and corrosion properties of the laser treated SUPERSTON alloy. Journal of Achievements in Materials and Manufacturing Engineering, 18 (2006) 415-418.]Search in Google Scholar
[28. Zieliński A., Jażdżewska M., Łubiński J., Serbiński W.: Effects of laser remelting at cryogenic conditions on microstructure and wear resistance of the Ti6Ai4V alloy applied in medicine. Solid State Phenomena, 183 (2012) 215-224.]Search in Google Scholar