Accesso libero

Advances in Carbon Fiber Reinforced Polyamide-Based Composite Materials

   | 31 dic 2019
INFORMAZIONI SU QUESTO ARTICOLO

Cita

1. Drobny, J.G.: Handbook of thermoplastic elastomers. Elsevier (2014).10.1016/B978-0-323-22136-8.00013-2Search in Google Scholar

2. Kausar, A.: Polyamide 1010/polythioamide blend reinforced with graphene nanoplatelet for automotive part application. Advances in Materials Science 17 (2017) 24-36.10.1515/adms-2017-0013Search in Google Scholar

3. Katunin, A., Krukiewicz, K., Herega, A. and Catalanotti, G.: 2016. Concept of a conducting composite material for lightning strike protection. Advances in Materials Science 16 (2016) 32-46.10.1515/adms-2016-0007Search in Google Scholar

4. Musztyfaga-Staszuk, M., Czupryński, A. and Kciuk, M.: Investigation of mechanical and anti-corrosion properties of flame sprayed coatings. Advances in Materials Science 18 (2018) 42-53.10.1515/adms-2017-0049Search in Google Scholar

5. Murthy, N.S.: Hydrogen bonding, mobility, and structural transitions in aliphatic polyamides. Journal of Polymer Science Part B: Polymer Physics 44(2006) 1763-1782.10.1002/polb.20833Search in Google Scholar

6. Majumdar, B., Keskkula, H. and Paul, D.R.: Morphology development in toughened aliphatic polyamides. Polymer 35(1994) 1386-1398.10.1016/0032-3861(94)90338-7Search in Google Scholar

7. Yang, C.Q., Wang, X.L., Jiao, Y.J., Ding, Y.L., Zhang, Y.F. and Wu, Z.S.: Linear strain sensing performance of continuous high strength carbon fibre reinforced polymer composites. Composites Part B: Engineering 102 (2016) 86-93.10.1016/j.compositesb.2016.07.013Search in Google Scholar

8. Yin, J., Liu, R.G., Huang, J.J., Liang, G., Liu, D. and Xie, G.H.: Comparative study on piezoresistive properties of CFRP tendons prepared by two different methods. Composites Part B: Engineering 129 (2017) 124-132.10.1016/j.compositesb.2017.07.064Search in Google Scholar

9. Tibbetts, G.G. and McHugh, J.J.: Mechanical properties of vapor-grown carbon fiber composites with thermoplastic matrices. Journal of Materials Research 14 (1999) 2871-2880.10.1557/JMR.1999.0383Search in Google Scholar

10. Ozkan, C., Karsli, N.G., Aytac, A. and Deniz, V.: Short carbon fiber reinforced polycarbonate composites: Effects of different sizing materials. Composites Part B: Engineering, 62 (2014) 230-235.10.1016/j.compositesb.2014.03.002Search in Google Scholar

11. Naskar, A.K., Keum, J.K. and Boeman, R.G.: Polymer matrix nanocomposites for automotive structural components. Nature nanotechnology, 11 (2016) 1026.10.1038/nnano.2016.262Search in Google Scholar

12. Kovács, T.A., Nyikes, Z. and Figuli, L.: Development of a Composite Material for Impact Load. Acta Materialia Transylvanica, 2 (2019) 105-109.10.33924/amt-2019-02-07Search in Google Scholar

13. Ma, Y., Yang, Y., Sugahara, T. and Hamada, H.: A study on the failure behavior and mechanical properties of unidirectional fiber reinforced thermosetting and thermoplastic composites. Composites Part B: Engineering, 99 (2016) 162-172.10.1016/j.compositesb.2016.06.005Search in Google Scholar

14. Kim, S., Lee, J., Roh, C., Eun, J. and Kang, C.: Evaluation of carbon fiber and p-aramid composite for industrial helmet using simple cross-ply for protecting human heads. Mechanics of Materials, 139 (2019) 103203.10.1016/j.mechmat.2019.103203Search in Google Scholar

15. Cerretini, G. and Giacomin, G.: Structural Reinforcement of a Masonry Building. In Key Engineering Materials 817 (2019) 673-679.10.4028/www.scientific.net/KEM.817.673Search in Google Scholar

16. Amran, Y.M., Alyousef, R., Rashid, R.S., Alabduljabbar, H. and Hung, C.C.: Properties and applications of FRP in strengthening RC structures: A review. In Structures 16 (2018) 208-238. Elsevier.10.1016/j.istruc.2018.09.008Search in Google Scholar

17. Szakács, J. and Mészáros, L.: Synergistic effects of carbon nanotubes on the mechanical properties of basalt and carbon fiber-reinforced polyamide 6 hybrid composites. Journal of Thermoplastic Composite Materials, 31(2018) 553-571.10.1177/0892705717713055Search in Google Scholar

18. Chen, H., Lim, C.L.J. and Fong, L.C.: PolyOne Corp, Polyamide compounds containing pitch carbon fiber. U.S. Patent 9,243,178 (2016).Search in Google Scholar

19. Kuciel, S., Kuźnia, P. and Jakubowska, P.: Properties of composites based on polyamide 10.10 reinforced with carbon fiber. Polimery, 61 (2016).10.14314/polimery.2016.106Search in Google Scholar

20. Shi, Z.Y., Cui, P. and Li, X.: A review on research progress of machining technologies of carbon fiber-reinforced polymer and aramid fiber-reinforced polymer. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 233 (2019) 4508-4520.10.1177/0954406219830732Search in Google Scholar

21. Kutz, M.: ed. Applied plastics engineering handbook: processing and materials. William Andrew (2011).Search in Google Scholar

22. Page, I.B.: Polyamides as engineering thermoplastic materials. Smithers Rapra Publishing, vol. 11, (2000).Search in Google Scholar

23. Amintowlieh, Y., Sardashti, A. and Simon, L.C.: Polyamide 6–wheat straw composites: Effects of additives on physical and mechanical properties of the composite. Polymer Composites 33 (2012) 976-984.10.1002/pc.22228Search in Google Scholar

24. Saba, N., Tahir, P.M. and Jawaid, M.: A review on potentiality of nano filler/natural fiber filled polymer hybrid composites. Polymers 6 (2014) 2247-2273.10.3390/polym6082247Search in Google Scholar

25. Kwon, Y.N. and Leckie, J.O.: Hypochlorite degradation of crosslinked polyamide membranes: II. Changes in hydrogen bonding behavior and performance. Journal of membrane science 282 (2006) 456-464.10.1016/j.memsci.2006.06.004Search in Google Scholar

26. Chung, H.Y., Hall, J.R., Gogins, M.A., Crofoot, D.G. and Weik, T.M.: Donaldson Co Inc, Polymer, polymer microfiber, polymer nanofiber and applications including filter structures. U.S. Patent 7,090,715 (2006).Search in Google Scholar

27. Lau, W.J., Gray, S., Matsuura, T., Emadzadeh, D., Chen, J.P. and Ismail, A.F.: A review on polyamide thin film nanocomposite (TFN) membranes: history, applications, challenges and approaches. Water research 80 (2015) 306-324.10.1016/j.watres.2015.04.037Search in Google Scholar

28. Akkapeddi, M.K., Glans, J.H., Dege, G.J. and Chung, S.J.: Honeywell International Inc, Polyamide compositions comprising aliphatic polyamide and an aromatic polyamide oligomer having improved moisture resistance. U.S. Patent 5,541,267 (1996).Search in Google Scholar

29. Tanner, D.A.V.I.D., Fitzgerald, J., Riewald, P.G. and Knoff, W.F.: Aramid structure/property relationships and their role in applications development. Marcel Dekker, Inc., Handbook of Fiber Science and Technology 3 (1989) pp.35-82.Search in Google Scholar

30. Slugin, I.V., Sklyarova, G.B., Kashirin, A.I. and Tkacheva, L.V.: Rusar para-aramid fibres for composite materials for construction applications. Fibre Chemistry 38 (2006) 25-26.10.1007/s10692-006-0033-0Search in Google Scholar

31. Singh, A.P., Garg, P., Alam, F., Singh, K., Mathur, R.B., Tandon, R.P., Chandra, A. and Dhawan, S.K.; 2012. Phenolic resin-based composite sheets filled with mixtures of reduced graphene oxide, γ-Fe2O3 and carbon fibers for excellent electromagnetic interference shielding in the X-band. Carbon 50(2012) 3868-3875.10.1016/j.carbon.2012.04.030Search in Google Scholar

32. Frank, E., Steudle, L.M., Ingildeev, D., Spoerl, J.M. and Buchmeiser, M.R.: Carbon fibers: precursor systems, processing, structure, and properties. Angewandte Chemie International Edition 53(2014), 5262-5298.10.1002/anie.20130612924668878Search in Google Scholar

33. Chand, S.: Review carbon fibers for composites. Journal of materials science, 35 (2000), 1303-1313.10.1023/A:1004780301489Search in Google Scholar

34. Behabtu, N., Young, C.C., Tsentalovich, D.E., Kleinerman, O., Wang, X., Ma, A.W., Bengio, E.A., ter Waarbeek, R.F., de Jong, J.J., Hoogerwerf, R.E. and Fairchild, S.B.: Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity. Science, 339 (2013), 182-186.10.1126/science.1228061Search in Google Scholar

35. Nataraj, S.K., Yang, K.S. and Aminabhavi, T.M.: Polyacrylonitrile-based nanofibers—A state-of-theart review. Progress in polymer science 37(2012) 487-513.10.1016/j.progpolymsci.2011.07.001Search in Google Scholar

36. Dhand V, Mittal G, Rhee KY, Park S-J, Hui D.: A short review on basalt fiber reinforced polymer composites. Composites Part B: Engineering 73 (2015) 166-180.10.1016/j.compositesb.2014.12.011Search in Google Scholar

37. Liu, W., Mohanty, A.K., Askeland, P., Drzal, L.T., Misra, M.: Influence of fiber surface treatment on properties of Indian grass fiber reinforced soy protein based biocomposites. Polymer 45 (2004) 7589-7596.10.1016/j.polymer.2004.09.009Search in Google Scholar

38. Xu, J., Ma, Y., Zhang, Q., Sugahara, T., Yang, Y., Hamada, H.: Crashworthiness of carbon fiber hybrid composite tubes molded by filament winding. Composite Structures. 139 (2016) 130-140.10.1016/j.compstruct.2015.11.053Search in Google Scholar

39. Awad, Z.K., Aravinthan, T., Zhuge, Y., Gonzalez, F.: A review of optimization techniques used in the design of fibre composite structures for civil engineering applications. Materials & Design. 33 (2012) 534-544.10.1016/j.matdes.2011.04.061Search in Google Scholar

40. Sharma M, Gao S, Mäder E, Sharma H, Wei LY, Bijwe J. Carbon fiber surfaces and composite interphases. Composites Science and Technology, 102 (2014) 35-50.10.1016/j.compscitech.2014.07.005Search in Google Scholar

41. Yao, S.S., Jin, F.L., Rhee, K.Y., Hui, D. and Park, S.J.: Recent advances in carbon-fiber-reinforced thermoplastic composites: A review. Composites Part B: Engineering 142 (2018) 241-250.10.1016/j.compositesb.2017.12.007Search in Google Scholar

42. An, H. J., Kim, J. S., Kim, K.-Y., Lim, D. Y. and Kim, D. H.: Mechanical and thermal properties of long carbon fiber-reinforced polyamide 6 composites. Fibers and Polymers 15 (2014) 2355-2359.10.1007/s12221-014-2355-5Search in Google Scholar

43. Li, J. and Zhang, Y.F.: The tensile properties of short carbon fiber reinforced ABS and ABS/PA6 composites. Journal of Reinforced Plastics and Composites, 29 (2020) 1727-1733.10.1177/0731684409337551Search in Google Scholar

44. Luo, H., Xiong, G., Ma, C., Li, D. and Wan, Y.: Preparation and performance of long carbon fiber reinforced polyamide 6 composites injection-molded from core/shell structured pellets. Materials & Design, 64 (2014) 294-300.10.1016/j.matdes.2014.07.054Search in Google Scholar

45. Yi, J.W., Lee, W., Seong, D.G., Won, H.J., Kim, S.W., Um, M.K. and Byun, J.H.: Effect of phenoxy-based coating resin for reinforcing pitch carbon fibers on the interlaminar shear strength of PA6 composites. Composites Part A: Applied Science and Manufacturing, 87 (2016) 212-219.10.1016/j.compositesa.2016.04.028Search in Google Scholar

46. Wu, S.H., Wang, F.Y., Ma, C.C.M., Chang, W.C., Kuo, C.T., Kuan, H.C. and Chen, W.J.: 2001. Mechanical, thermal and morphological properties of glass fiber and carbon fiber reinforced polyamide-6 and polyamide-6/clay nanocomposites. Materials Letters, 49 (2001) 327-333.10.1016/S0167-577X(00)00394-3Search in Google Scholar

47. Li, J.: Interfacial studies on the O3 modified carbon fiber-reinforced polyamide 6 composites. Applied Surface Science, 255 (2008) 2822-2824.10.1016/j.apsusc.2008.08.013Search in Google Scholar

48. Karsli, N.G. and Aytac, A.: Tensile and thermomechanical properties of short carbon fiber reinforced polyamide 6 composites. Composites Part B: Engineering, 51 (2013) 270-275.10.1016/j.compositesb.2013.03.023Search in Google Scholar

49. Li J, Zhang YF.: The tensile properties of HNO3-treated carbon fiber reinforced ABS/PA6 composites. Surface and Interface Analysis 41(2009) 610-614.10.1002/sia.3072Search in Google Scholar

50. Ma, Y., Ueda, M., Yokozeki, T., Sugahara, T., Yang, Y. and Hamada, H.: A comparative study of the mechanical properties and failure behavior of carbon fiber/epoxy and carbon fiber/polyamide 6 unidirectional composites. Composite Structures, 160 (2017) 89-99.10.1016/j.compstruct.2016.10.037Search in Google Scholar

51. Costa, A.P.D., Botelho, E.C., Costa, M.L., Narita, N.E. and Tarpani, J.R.: A review of welding technologies for thermoplastic composites in aerospace applications. Journal of Aerospace Technology and Management, 4 (2012) 255-265.10.5028/jatm.2012.040303912Search in Google Scholar

52. Botelho, E.C., Scherbakoff, N. and Rezende, M.C.: Study of polyamide 6/6 synthesis carried out by interfacial polymerization on carbon fibre. Polymer international, 51 (2002) 1261-1267.10.1002/pi.1064Search in Google Scholar

53. Botelho, E.C., Scherbakoff, N., Rezende, M.C., Kawamoto, A.M. and Sciamareli, J.: Synthesis of polyamide 6/6 by interfacial polycondensation with the simultaneous impregnation of carbon fibers. Macromolecules, 34 (2001) 3367-3375.10.1021/ma000902kSearch in Google Scholar

54. Karsli, N.G., Ozkan, C., Aytac, A. and Deniz, V.: Effects of sizing materials on the properties of carbon fiberreinforced polyamide 6, 6 composites. Polymer Composites, 34 (2013) 1583-1590.10.1002/pc.22556Search in Google Scholar

55. Beylergil, B., Tanoğlu, M. and Aktaş, E.: Enhancement of interlaminar fracture toughness of carbon fiber–epoxy composites using polyamide6, 6 electrospun nanofibers. Journal of Applied Polymer Science, 134 (2017) 45244.10.1002/app.45244Search in Google Scholar

56. Jin, X., Sun, J., Zhang, J.S., Gu, X., Bourbigot, S., Li, H., Tang, W. and Zhang, S.: Preparation of a novel intumescent flame retardant based on supramolecular interactions and its application in polyamide 11. ACS applied materials & interfaces, 9 (2017) 24964-24975.10.1021/acsami.7b06250Search in Google Scholar

57. Bai, J., Yuan, S., Shen, F., Zhang, B., Chua, C.K., Zhou, K. and Wei, J.: Toughening of polyamide 11 with carbon nanotubes for additive manufacturing. Virtual and Physical Prototyping, 12 (2017) 235-240.10.1080/17452759.2017.1315146Search in Google Scholar

58. Zierdt, P., Theumer, T., Kulkarni, G., Däumlich, V., Klehm, J., Hirsch, U. and Weber, A.: Sustainable wood-plastic composites from bio-based polyamide 11 and chemically modified beech fibers. Sustainable Materials and Technologies, 6 (2015) 6-14.10.1016/j.susmat.2015.10.001Search in Google Scholar

59. Lao, S.C., Yong, W., Nguyen, K., Moon, T.J., Koo, J.H., Pilato, L. and Wissler, G.: Flame-retardant polyamide 11 and 12 nanocomposites: processing, morphology, and mechanical properties. Journal of composite materials, 44 (2010) 2933-2951.10.1177/0021998310369580Search in Google Scholar

60. Zhang, Q., Jin, H., Wang, X. and Jing, X.: Morphology of conductive blend fibers of polyaniline and polyamide-11. Synthetic Metals, 123 (2001) 481-485.10.1016/S0379-6779(01)00354-XSearch in Google Scholar

61. Sandler, J.K.W., Pegel, S., Cadek, M., Gojny, F., Van Es, M., Lohmar, J., Blau, W.J., Schulte, K., Windle, A.H. and Shaffer, M.S.P.: A comparative study of melt spun polyamide-12 fibres reinforced with carbon nanotubes and nanofibres. Polymer, 45 (2004) 2001-2015.10.1016/j.polymer.2004.01.023Search in Google Scholar

62. Perrot, C., Piccione, P.M., Zakri, C., Gaillard, P. and Poulin, P.: Influence of the spinning conditions on the structure and properties of polyamide 12/carbon nanotube composite fibers. Journal of Applied Polymer Science, 114 (2009) 3515-3523.10.1002/app.30875Search in Google Scholar

63. Wiedmer, S. and Manolesos, M.: An experimental study of the pultrusion of carbon fiber-polyamide 12 yarn. Journal of thermoplastic composite materials, 19 (2006) 97-112.10.1177/0892705706055448Search in Google Scholar

64. Erden, S., Ho, K.K., Lamoriniere, S., Lee, A.F., Yildiz, H. and Bismarck, A.: Continuous atmospheric plasma oxidation of carbon fibres: influence on the fibre surface and bulk properties and adhesion to polyamide 12. Plasma Chemistry and Plasma Processing, 30 (2010) 471-487.10.1007/s11090-010-9227-6Search in Google Scholar

65. Kurokawa, M., Uchiyama, Y., Iwai, T. and Nagai, S.: Performance of plastic gear made of carbon fiber reinforced polyamide 12. Wear, 254 (2003) 468-473.10.1016/S0043-1648(03)00020-6Search in Google Scholar

66. Wang, J., Gu, M., Zhu, Z., Ge, S. and Liu, W.: Tribological properties of hybrid carbon fiber and MoS 2 reinforced polyamide 1010 composites. Fuhe Cailiao Xuebao (Acta Materiae Compositae Sinica, China), 20 (2003) 13-18.Search in Google Scholar

67. Wang, J.X., Ge, S.R. and Li, L.: Effect of counterpart surface roughness on the tribological behavior of carbon fiber reinforced polyamide 1010 composites. Mocaxue Xuebao (Tribology, China), 21 (2001) 106-109.Search in Google Scholar

68. WANG, J.X. and GU, M.Y.: Tribological Behaviors and Wear Mechanism of Carbon Fiber Reinforced Nylon 1010 Composites. Materials For Mechanical Engineering, 7 (2003).Search in Google Scholar

69. Nikiforov, A.A., Vol’fson, S.I., Okhotina, N.A., Rinberg, R., Hartmann, T. and Kroll, L.: Mechanical properties of the compositions based on biopolyamide-1010 modified by carbon, glass, and cellulose chopped fibers. Russian Metallurgy (Metally), 4 (2017) 279-282.10.1134/S0036029517040152Search in Google Scholar

70. Ge, S., Zhang, D., Zhu, H. and Wang, J.: Mechanical properties and their influence on the friction and wear of the carbon fibers reinforced polyamide 1010. Fuhe Cailiao Xuebao(Acta Mater. Compos. Sin., China), 21(2004) 99-104.Search in Google Scholar

71. Nikiforov, A.A., Okhotina, N.A., Fayzullin, I.Z., Volfson, S.I., Rinberg, R. and Kroll, L., 2016, November. Stress-strain properties of composites based on bio-based polyamide 1010 filled with cut fibers. In AIP Conference Proceedings, AIP Publishing, vol. 1785 (2016) 030018.10.1063/1.4967039Search in Google Scholar

72. Sun, Z., Hu, X., Sun, S. and Chen, H.: Energy-absorption enhancement in carbon-fiber aluminum-foam sandwich structures from short aramid-fiber interfacial reinforcement. Composites Science and Technology, 77 (2013) 14-21.10.1016/j.compscitech.2013.01.016Search in Google Scholar

73. Feldman, A.Y., Gonzalez, M.F., Wachtel, E., Moret, M.P. and Marom, G.: Transcrystallinity in aramid and carbon fiber reinforced nylon 66: determining the lamellar orientation by synchrotron X-ray micro diffraction. Polymer, 45 (2004) 7239-7245.10.1016/j.polymer.2004.08.027Search in Google Scholar

74. Won, M.S. and Dharan, C.K.H.: Drilling of aramid and carbon fiber polymer composites. Journal of Manufacturing Science and Engineering, 124 (2002) 778-783.10.1115/1.1505854Search in Google Scholar

75. Ma, Y., Sugahara, T., Yang, Y. and Hamada, H.: A study on the energy absorption properties of carbon/aramid fiber filament winding composite tube. Composite Structures, 123 (2015) 301-311.10.1016/j.compstruct.2014.12.067Search in Google Scholar

76. Kozlov, G.V., Burya, A.I., Dolbin, I.V. and Zaikov, G.E.: Fractal model of the heat conductivity for carbon fiber-reinforced aromatic polyamide. Journal of applied polymer science, 100 (2006) 3828-3831.10.1002/app.23821Search in Google Scholar

77. Duchoslav, J., Unterweger, C., Steinberger, R., Fürst, C. and Stifter, D.: Investigation on the thermooxidative stability of carbon fiber sizings for application in thermoplastic composites. Polymer Degradation and Stability, 125 (2016) 33-42.10.1016/j.polymdegradstab.2015.12.016Search in Google Scholar

78. Hofstätter, T., Pedersen, D.B., Tosello, G. and Hansen, H.N.: State-of-the-art of fiber-reinforced polymers in additive manufacturing technologies. Journal of Reinforced Plastics and Composites, 36 (2017) 1061-1073.10.1177/0731684417695648Search in Google Scholar

79. TrigoLópez, M., BarrioManso, J.L., Serna, F., García, F.C. and García, J.M.: Crosslinked Aromatic Polyamides: A Further Step in HighPerformance Materials. Macromolecular Chemistry and Physics, 214 (2013) 2223-2231.10.1002/macp.201300342Search in Google Scholar

80. Trigo-López, M., Estévez, P., San-José, N., Gómez-Valdemoro, A., García, F.C., Serna, F., Pena, J.L. and García, J.M.: Recent patents on aromatic polyamides. Recent Patents on Materials Science, 2 (2009) 190-208.10.2174/1874464810902030190Search in Google Scholar

81. Dike, A.S.: Improvement of mechanical and physical properties of carbon fiber-reinforced polyamide composites by applying different surface coatings for short carbon fiber. Journal of Thermoplastic Composite Materials, (2009) 0892705719877218.Search in Google Scholar

eISSN:
2083-4799
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Materials Sciences, Functional and Smart Materials