Accesso libero

Biomaterials and Implants in Cardiac and Vascular Surgery - Review

INFORMAZIONI SU QUESTO ARTICOLO

Cita

1. Świeczko-Żurek B., Zieliński A., Sobieszczyk S., Ossowska A.: Biomaterials [in Polish], Gdansk Univ. of Technology, 2011.Search in Google Scholar

2. Polohski L. [ed.]: Fundamentals of cardiology [in Polish]. Katowice, Śląska Akademia Medyczna, 2000.Search in Google Scholar

3. Williams D.F.: Definitions in biomaterials. Amsterdam - Oxford - New York Tokyo, Elsevier (1987), 24.Search in Google Scholar

4. Williams D.F.: Definitions in biomaterials. Progress in Biomedical Engineering 4 (1987), 67.Search in Google Scholar

5. www.imz.us.edu.pl, date of download: 12.10.2013.Search in Google Scholar

6. Bergmann C.P., Stumpf A.: Dental ceramics, Topics in mining. Metallurgy and materials engineering, 2 Springer-Verlag Berlin Heidelberg, 2013.10.1007/978-3-642-38224-6Search in Google Scholar

7. Kucharczyk W., Mazurkiewicz A., Żurowski W.: Modern construction materials - selected issues [in Polish]. Politechnika Radomska, Radom, 2008.Search in Google Scholar

8. Blicharski M.: Introduction to engineering materials [in Polish]. WNT Warszawa, 2003.Search in Google Scholar

9. Dudek A., Przerada I.: Metallic-ceramic composites for use in medicine [in Polish]. Materiały ceramiczne, 62, 1 (2010), 20-23.Search in Google Scholar

10. Snyder R.W., Helmus M.N.: Cardiovascular biomaterial, standard handbook of biomedical engineering and design, 2004.Search in Google Scholar

11. Nowacki J., Dobrzahski L.A., Gustavo F: Intramedullary implants in long bones osteosynthesis, Gopen Access Library, 11, 2012.Search in Google Scholar

12. Schliephake H., Kage T.: Enhancement of bone regeneration using resorbable ceramics and a polymer-ceramic composite material. Journal of biomedical materials research, 56 (2001), 1.10.1002/1097-4636(200107)56:1<128::AID-JBM1077>3.0.CO;2-LSearch in Google Scholar

13. Hench L.L., Paschall H.A.: Direct chemical bond of bioactive glass-ceramic materials to bone and muscle. Journal of biomedical materials research, 7, 3 (1973), 25-42.Search in Google Scholar

14. Ritchie R.O.: Fatigue and fracture of pyrolytic carbon: A damage-tolerant approach to structural integrity and life prediction in ‘ceramic’ heart valve prostheses. Journal of heart valve disease, 5, 1 (1996) 9-31.Search in Google Scholar

15. Robert A., Freitas J.: Pyrolytic or low temperature isotropic carbon, Nanomedicine IIA: Biocompatibility, Landes Bioscience, Georgetown, TX, 2003.Search in Google Scholar

16. Davis J.R: Handbook of materials for medical devices, 6, 2003, 148.Search in Google Scholar

17. Carter C.B., Norton M.G.: Ceramic materials: science and engineering, 35, 635-651.Search in Google Scholar

18. Scheerded I.D.: The Biocompatibility of diamond-like carbon nano films, J. Invasive Cardiology 12, 2000, 389-394.Search in Google Scholar

19. Okroj W., Kamihska M., Klimek L., Szymahski W., Walkowiak B.: Blood platelets in contact with nanocrystalline diamond surfaces, Diamond&related materials 15, 10 (2006), 1535-1539.Search in Google Scholar

20. Grill A.: Diamond-like carbon coatings as biocomplatible materials- an overview. Diamond&related materials, 12, 2 (2003), 166-170.10.1016/S0925-9635(03)00018-9Search in Google Scholar

21. Hauert R: A review of modified DLC coatings for biological applications. Diamond&related materials 12, 3-7 (2003), 583-589.10.1016/S0925-9635(03)00081-5Search in Google Scholar

22. Freitas R.A.: Foresight Update, 39 Foresight Inst. Palo-Alto, CA, USA, 1999.Search in Google Scholar

23. Dearnley P.A.: A review of metalli, ceramic and surface treated metals used for bearing surface in human joint replacements. Proc. of institution of mechanical engineers. Art H., Engineering in medicine, 213 (1999), 107-135.10.1243/0954411991534843Search in Google Scholar

24. Brinson H.F, Brinson L.C., Polymer engineering science and viscoelasticity: characteristics, applications and properties of polymers, 2008, 55-97.10.1007/978-0-387-73861-1_3Search in Google Scholar

25. Świeczko - Żurek B: Biomaterials [in Polish], Wydawnictwo Politechniki Gdahskiej, 2009, GdańskSearch in Google Scholar

26. Sowa-Lewandowska K.: Real or artificial? - A few words about the biomaterials. www.laboratoria.net.pl, date of download: 16.10.2013Search in Google Scholar

27. Guidoin R.C., Snyder, R.W., Awad J.A., King, M.W.: Biostability of vascular prostheses. Cardiovascular biomaterials, Hastings, GW [ed.]. New York: Springer-Verlag, 1991.Search in Google Scholar

28. www.ptfe.net.pl, date of download 4.01.2014.Search in Google Scholar

29. Maarek J.M., Guidoin R., Auhin M., Prud'homme R.E.: Molecular weight characterisation of virgin and explanted polyester arterial prostheses. Journal biomedical materials research 18 (1984), 881-894.Search in Google Scholar

30. Guidoin R, Martin L., Marois M, Gosselin C, King M., Gunasekera K., Domurado D., SigotLuizard M.F., Sigot M., Blais P.: Polyester prostheses as suhstitutes in the thoracic aorta of dogs. II. Evaluation of alhuminated polyester grafts stored in ethanol. Journal biomedical material research 18 (1984), 1059-1072.Search in Google Scholar

31. Cengiz M., Sauvage L.R., Berger K, Rohel S.B., Robel V., Wu H.D., Walker M., Appleyard R.F., Wood S.J.: Effects of compliance alteration on healing of a porous Dacron prosthesis in the thoracic aorta of the dog. Surgical gynecological obstet 158 (1984), 145-151.Search in Google Scholar

32. Błażewicz M., Błażewicz S., Chłopek J., Staszków E.: Structure and properties of carbon materials for medical applications. Ceramics in substitutive and reconstructive surgery. Amsterdam: Elsevier, 1991.Search in Google Scholar

33. Błażewicz M.: Carbon materials in the treatment of soft and hard tissue injuries. European cells and materials 2 (2001), 21-29.10.22203/eCM.v002a03Search in Google Scholar

34. Nałęcz M. [ed.]: Biocybernetics and biomedical engineering 2000, Vol. 4 Biomaterials [in Polish]. PAN, Akademicka oficyna wydawnicza Exit, 2003.Search in Google Scholar

35. Liu X., Chu P.K., Ding C: Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Material science engineering 47 (2004), 49-121.Search in Google Scholar

36. Marciniak J.: Biomaterials [in Polish]. Wydawnictwo Politechniki Śląskiej, 2002, Gliwice.Search in Google Scholar

37. Talonen J., Nenonen P., Pape G., Hänninen H.: Effect of strain rate on the strain-induced -martensite transformation and mechanical properties of austenitic stainless steels, Metallurgical and materials transactions A, 432, 36A, February 2005.10.1007/s11661-005-0313-ySearch in Google Scholar

38. Pelletier H., Muller D., Mille P., Cornet A., Grob J.J.: Surf. Coat Technol. 2002, 151-377.10.1016/S0257-8972(01)01596-1Search in Google Scholar

39. Rawers J., Crogdon F., Krabbe R, Duttlinger N., Powder Metall., 39, 1996.10.1179/pom.1996.39.2.125Search in Google Scholar

40. Fujiwara H., Ameyama K.: Mater Sci. Forum, 47 (1999), 304-306.Search in Google Scholar

41. Ucok I., Ando T., Grant N.J.: Mater Sci. Eng. A, 1991, 133:284.10.1016/0921-5093(91)90070-4Search in Google Scholar

42. Pakiela Z., Sus-Ryszkowska M., Druzycka-Wiencek A., Kurzydlowski K.J.: Seventh Int. Conf. on Nanostructured Materials, Germany, 20-24 June 2004.Search in Google Scholar

43. Elias C.N., Lima J.H.C., Valiev R, Meyers M.A.: Biomedical applications of titanium and its alloys, Biological materials science, 2008 March JOM, 46-49.10.1007/s11837-008-0031-1Search in Google Scholar

44. de Viteri V.S., Fuentes E., Titanium and titanium alloys as biomaterials, Tribology -fundamentals and advancements, 2013 May, 155-174.10.5772/55860Search in Google Scholar

45. Krasicka-Cydzik E., Mstowski J., Ciupik L.F.: Implant materials: steel and titanium alloys, Dero system: The development of operational techniques of treatment of spine.Search in Google Scholar

46. Breitbart A.S., Ablaza V.J., Implant materials, Grabb and Smith's Plastic Surgery, Sixth Edition by Charles H. Thorne, Copyright © 2007 by Lippincott Williams & Wilkins.Search in Google Scholar

47. Stodolak E., Fraczek-Szczypta A., Mikociak D., Morawska-Chochól A., Szaraniec E., Zima A.: Laboratory of subject: implants and artificial organs [in Polish], Międzywydziałowa Szkoła Inżynierii Biomedycznej, AGH, Kraków, 2009.Search in Google Scholar

48. Kaczmarek M., Tyrlik-Held J., Paszenda Z., Marciniak J.: Characteristics of stents in terms of application and material. Achievements in mechanical&materials engineering. 12th international scientific conference, Politechnika Śląska, Gliwice (2003), 421-428.Search in Google Scholar

49. Gąsior Z., Stępińska J.: Advances in the diagnosis and treatment of acquired valvular heart defects [in Polish], Centrum Medyczne Kształcenia Podyplomowego w Warszawie (2011).Search in Google Scholar

50. http://rcpals.com/downloads/2007files/may/accaha/type_of_stents.html, date of download: 2.01.2014Search in Google Scholar

51. Kopernik M: The role of supporting research in the design of artificial ventricle, 2008.Search in Google Scholar

52. Butany J., Ahluvalia M.S., Munroe C, Fayet C, Ahn C, Blit P, Kepron C, Cusimano R.J., Leask R.L.: Mechanical heart valve prosthesis: identification and evaluation (erratum). Cardiovascular pathology, 12 (2003), 322-344.Search in Google Scholar

53. Rachwalik M., Biały D., Wawrzyńska M.: Mechanical prosthetic heart valves - the history and development of technology. Acta Bio-optica et. Informatica Medica, 2012.Search in Google Scholar

54. Bhuvaneshwar G.S., Muraleedharan C.V., Ramani A.V., Valiathan M.S.: Evaluation of materials for artificial heart valves. Bull. Material Science, 14 (1991), 1361-1374.Search in Google Scholar

55. Bloomfield P.: Choice of heart valve prosthesis, Heart, BMJ Group, http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1767148/Search in Google Scholar

56. Muraleedharan C.V., Bhuvaneshwar G.S.: Failure mode and effect analysis of Chitra heart valve prosthesis, Proc. RC IEEE & 14th BMESI, New Delhi, 1995, 352-354.Search in Google Scholar

57. Corbett T.L., Elher K.S., Garwood C.L.: Successful use of fondaparinux in a patient with a mechanical heart valve replacement and a history of heparin-induced thrombocytopenia, J Thromb thrombolysis 1 (2010), 23.10.1007/s11239-010-0494-020571919Search in Google Scholar

58. Quinn J., Von Klemperer K., Brooks R.: Use of high intensity adjusted dose low molecular weight heparin in women with mechanical heart valves during pregnancy: a single-center experience, Haematologica 9 (2009), 1608-1612.10.3324/haematol.2008.002840277097419880782Search in Google Scholar

59. Khan S., Trento A., DeRobertis M.: Twenty-year comparison of tissue and mechanical valve replacement, The journal of thoracic and cardiovascular surgery 122 (2001), 257-268.10.1067/mtc.2001.11523811479498Search in Google Scholar

60. www.cskmswia.pl, Department of Cardiac Surgery - Poland's first operation of biological heart valve implantation of the latest generation, date of download: 31.01.2014.Search in Google Scholar

eISSN:
2083-4799
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Materials Sciences, Functional and Smart Materials