This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
J. Paik, Olanzapine/Samidorphan: First approval, Drugs81 (2021) 1431–1436; https://doi.org/10.1007/s40265-021-01568-0Search in Google Scholar
P. Zubiaur, P. Soria-Chacartegui, G. Villapalos-García, J. J. Gordillo-Perdomo and F. Abad-Santos, The pharmacogenetics of treatment with olanzapine, Pharmacogenomics22(14) (2021) 939–958; https://doi.org/10.2217/pgs-2021-0051Search in Google Scholar
M. Jovanović, K. Vučićević and B. Miljković, Understanding variability in the pharmacokinetics of atypical antipsychotics – focus on clozapine, olanzapine and aripiprazole population models, Drug Metab. Rev.52(1) (2020) 1–18; https://doi.org/10.1080/03602532.2020.1717517Search in Google Scholar
V. Krishnamoorthy, A. Nagalingam, V. P. Ranjan Prasad, S. Parameshwaran, N. George and P. Kaliyan, Characterization of olanzapine-solid dispersions, Iran. J. Pharm. Res.10(1) (2011) 13–24; https://doi.org/10.22037/IJPR.2010.880Search in Google Scholar
J. H. Mao, L. Han, X. Q. Liu and Z. Jiao, Significant predictors for olanzapine pharmacokinetics: A systematic review of population pharmacokinetic studies, Expert Rev. Clin. Pharmacol.16(6) (2023) 575–588; https://doi.org/10.1080/17512433.2023.2219055Search in Google Scholar
M. Ur Rehman, A. Rasul, M. I. Khan, M. Rasool, G. Abbas, F. Masood, I. Nazir, M. Iqbal, N. Islam, M. Hameed and P. Akhtar Shah, Oral bioavailability studies of niosomal formulations of cyclosporine A in albino rabbits, Pak. J. Pharm. Sci.34(1) (2021) 313–319.Search in Google Scholar
A. Shahiwala and A. Misra, Studies in topical application of niosomally entrapped nimesulide, J. Pharm. Pharm. Sci.5(3) (2002) 220–225; https://pubmed.ncbi.nlm.nih.gov/12553889Search in Google Scholar
P. L. Yeo, C. L. Lim, S. M. Chye, A. P. K. Ling and R. Y. Koh, Niosomes: A review of their structure, properties, methods of preparation, and medical applications, Asian Biomed.11(4) (2018) 301–314; https://doi.org/10.1515/abm-2018-0002Search in Google Scholar
Y. K. Lin, C. Y. Hsiao, A. Alshetaili, I. A. Aljuffali, E. L. Chen and J. Y. Fang, Lipid-based nanoformulation optimization for achieving cutaneous targeting: Niosomes as the potential candidates to fulfill this aim, Eur. J. Pharm. Sci.186 (2023) Article ID 106458 (13 pages); https://doi.org/10.1016/j.ejps.2023.106458Search in Google Scholar
M. Moghtaderi, K. Sedaghatnia, M. Bourbour, M. Fatemizadeh, Z. S. M. Moghaddam, F. Hejabi, F. Heidari, S. Quazi and B. Farasati Far, Niosomes: A novel targeted drug delivery system for cancer, Med. Oncol.39 (2022) Article ID 240; https://doi.org/10.1007/s12032-022-01836-3Search in Google Scholar
D. A. Deulkar, J. A. Kubde, P. R. Hatwar, R. L. Bakal and A. N. Motwani, Niosomes: A promising approach for targeted drug delivery, GSC Biol. Pharm. Sci.29(1) (2024) 179–195; https://doi.org/10.30574/gscbps.2024.29.1.0341Search in Google Scholar
S. Gao, Z. Sui, Q. Jiang and Y. Jiang, Functional evaluation of niosomes utilizing surfactants in nanomedicine applications, Int. J. Nanomedicine2024 (2024) 10283–10305; https://doi.org/10.2147/IJN.S480639Search in Google Scholar
M. Yaghoobian, A. Haeri, N. Bolourchian, S. Shahhosseni and S. Dadashzadeh, The impact of surfactant composition and surface charge of niosomes on the oral absorption of repaglinide as a BCS II model drug, Int. J. Nanomedicine2020 (2020) 8767–8781; https://doi.org/10.2147/IJN.S261932Search in Google Scholar
B. D. Coday, T. Luxbacher, A. E. Childress, N. Almaraz, P. Xu and T. Y. Cath, Indirect determination of zeta potential at high ionic strength: Specific application to semipermeable polymeric membranes, J. Memb. Sci.478 (2015) 58–64; https://doi.org/10.1016/j.memsci.2014.12.047Search in Google Scholar
A. K. Sailaja and M. Shreya, Preparation and characterization of naproxen loaded niosomes by ether injection method, Nano Biomed. Eng.10(2) (2018) 143–149; https://doi.org/10.5101/nbe.v10i2.p174-180Search in Google Scholar
A. Moammeri, M. M. Chegeni, H. Sahrayi, R. Ghafelehbashi, F. Memarzadeh, A. Mansouri, I. Akbarzadeh, M. Sadat Abtahi, F. Hejabi and Q. Ren, Current advances in niosomes applications for drug delivery and cancer treatment, Mater. Today Bio.23 (2023) Article ID 100837 (20 pages); https://doi.org/10.1016/j.mtbio.2023.100837Search in Google Scholar
P. Pandey, R. Pal, V. K. R. Khadam, H. S. Chawra and R. P. Singh, Advancement and characteristics of non-ionic surfactant vesicles (niosome) and their application for analgesics, Int. J. Pharm. Investig.14(3) (2024) 616–632; https://doi.org/10.5530/IJPI.14.3.74Search in Google Scholar
D. Pozzi, R. Caminiti, C. Marianecci, M. Carafa, E. Santucci, S. C. De Sanctis and G. Caracciolo, Effect of cholesterol on the formation and hydration behavior of solid-supported niosomal membranes, Langmuir26(4) (2010) 2268–2273; https://doi.org/10.1021/la9026877Search in Google Scholar
M. H. Nematollahi, A. Pardakhty, M. Torkzadeh-Mahanai, M. Mehrabani and G. Asadikaram, Changes in physical and chemical properties of niosome membrane induced by cholesterol: A promising approach for niosome bilayer intervention, RSC Adv.7 (2017) Article ID 49463 (10 pages); https://doi.org/10.1039/C7RA07834JSearch in Google Scholar
F. Nowroozi, A. Almasi, J. Javidi, A. Haeri and S. Dadashzadeh, Effect of surfactant type, cholesterol content and various downsizing methods on the particle size of niosomes, Iran. J. Pharm. Res.17 (2018) 1–13.Search in Google Scholar
P. Palozza, R. Muzzalupo, S. Trombino, A. Valdannini and N. Picci, Solubilization and stabilization of β-carotene in niosomes: Delivery to cultured cells, Chem. Phys. Lipids139(1) (2006) 32–42; https://doi.org/10.1016/j.chemphyslip.2005.09.004Search in Google Scholar
A. Manosroi, P. Wongtrakul, J. Manosroi, H. Sakai, F. Sugawara, M. Yuasa and M. Abe, Characterization of vesicles prepared with various non-ionic surfactants mixed with cholesterol, Colloids Surf. B Biointerfaces30(1–2) (2003) 129–138; https://doi.org/10.1016/S0927-7765(03)00080-8Search in Google Scholar
N. Ruwizhi and B. A. Aderibigbe, The efficacy of cholesterol-based carriers in drug delivery, Molecules25(18) (2020) Article ID 4330 (40 pages); https://doi.org/10.3390/molecules25184330Search in Google Scholar
N. S. Heredia, K. Vizuete, M. Flores-Calero, V. Pazmiño, F. K. Pilaquinga, B. Kumar and A. Debut, Comparative statistical analysis of the release kinetics models for nanoprecipitated drug delivery systems based on poly(lactic-co-glycolic acid), PLoS One17 (2022) e0264825 (18 pages); https://doi.org/10.1371/journal.pone.0264825Search in Google Scholar
I. Y. Wu, S. Bala, N. Škalko-Basnet and M. P. di Cagno, Interpreting non-linear drug diffusion data: Utilizing Korsmeyer-Peppas model to study drug release from liposomes, Eur. J. Pharm. Sci.138 (2019) Article ID 105026 (14 pages); https://doi.org/10.1016/j.ejps.2019.105026Search in Google Scholar
S. Zolghadri, A. G. Asad, F. Farzi, F. Ghajarzadeh, Z. Habibi, M. Rahban, S. Zolghadri and A. Stanek, Span 60/cholesterol niosomal formulation as a suitable vehicle for gallic acid delivery with potent in vitro antibacterial, antimelanoma, and antityrosinase activity, Pharmaceuticals16(12) (2023) Article ID 1680; https://doi.org/10.3390/ph16121680Search in Google Scholar
B. Korchowiec, M. Paluch, Y. Corvis and E. Rogalska, A Langmuir film approach to elucidating interactions in lipid membranes: 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine/cholesterol/metal cation systems, Chem. Phys. Lipids144(2) (2006) 127–136; https://doi.org/10.1016/j.chemphyslip.2006.08.005Search in Google Scholar
A. Rasul, M. Imran Khan, M. U. Rehman, G. Abbas, N. Aslam, S. Ahmad, K. Abbas, P. Akhtar Shah, M. Iqbal,A. M. Ahmed Al Subari, T. Shaheer and S. Shas, In vitro characterization and release studies of combined nonionic surfactant-based vesicles for the prolonged delivery of an immunosuppressant model drug, Int. J. Nanomedicine2020 (2020) 7937–7949; https://doi.org/10.2147/IJN.S268846Search in Google Scholar
M. H. Mowlaeifar, M. Niakousari, S. M. H. Hosseini and M. H. Eskandari, Effect of cholesterol to vitamin D3 and Span 60 to Tween 60 ratios on the characteristics of niosomes: Variable optimization using response surface methodology (RSM), J. Food Qual.2022 (2022) Article ID 7005531 (8 pages); https://doi.org/10.1155/2022/7005531Search in Google Scholar
G. Abdelbary and N. El-gendy, Niosome-encapsulated gentamicin for ophthalmic controlled delivery, AAPS PharmSciTech9 (2008) 740–747; https://doi.org/10.1208/s12249-008-9105-1Search in Google Scholar
P. Balakrishnan, B. J. Lee, D. H. Oh, J. O. Kim, Y. I. Lee, D. D. Kim, J.-P. Jee, Y.-B. Lee, J. S. Woo, C. S. Yong and H.-G. Choi, Enhanced oral bioavailability of Coenzyme Q10 by self-emulsifying drug delivery systems, Int. J. Pharm.374(1–2) (2009) 66–72; https://doi.org/10.1016/j.ijpharm.2009.03.008Search in Google Scholar