PPIA, HRPT1, and PGK1 genes as the appropriate combination for RT-qPCR normalization in alveolar and femoral bone remodeling in olanzapine-treated rats
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
K. Okamura, Y. Inagaki, T. K. Matsui, M. Matsubayashi, T. Komeda, M. Ogawa, E. Mori and Y. Tanaka, RT-qPCR analyses on the osteogenic differentiation from human iPS cells: an investigation of reference genes, Sci. Rep.10(1) (2020) 1–10; https://doi.org/10.1038/s41598-020-68752-2Search in Google Scholar
X. Tu, J. Delgado-Calle, K. W. Condon, M. Maycas, H. Zhang, N. Carlesso, M. M. Taketo, D. B. Burr, L. I. Plotkin and T. Bellido, Osteocytes mediate the anabolic actions of canonical Wnt/β-catenin signaling in bone, Proc. Natl. Acad. Sci. U S A,112(5) (2015) E478–86; https://doi.org/10.1073/pnas.1409857112Search in Google Scholar
M. R. Rad, D. Liu, H. He, H. Brooks, M. Xiao, G. E. Wise and S. H. Yao, The role of dentin matrix protein 1 (DMP1) in regulation of osteogenic differentiation of rat dental follicle stem cells (DFSCs), Arch. Oral Biol.60(4) (2015) 546–556; https://doi.org/10.1016/j.archoralbio.2014.12.013Search in Google Scholar
C. Zhang, H. Dai and B. de Crombrugghe, Characterization of Dkk1 gene regulation by the osteo-blast-specific transcription factor Osx, Biochem. Biophys. Res. Commun.420(4) (2012) 782–786; https://doi.org/10.1016/j.bbrc.2012.03.073Search in Google Scholar
T. Svingen, H. Letting, N. Hadrup, U. Hass and A. M. Vinggaard, Selection of reference genes for quantitative RT-PCR (RT-qPCR) analysis of rat tissues under physiological and toxicological conditions, PeerJ.3 (2015) 1–15; https://doi.org/10.7717/peerj.855Search in Google Scholar
J. Vandesompele, K. De Preter, F. Pattyn, B. Poppe, N. Van Roy, A. De Paepe and F. Speleman, Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes, Genome Biol.3(7) (2002) 1–12; https://doi.org/10.1186/gb-2002-3-7-research0034Search in Google Scholar
S. A. Bustin, V. Benes, J. A. Garson, J. Hellemans, J. Huggett, M. Kubista, R. Mueller, T. Nolan, M. W. Pfaffl, G. L. Shipley, J. Vandesompele and C. T. Wittwer, The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments, Clin. Chem.55(4) (2009) 611–622; https://doi.org/10.1373/clinchem.2008.112797Search in Google Scholar
J. Huggett, K. Dheda, S. Bustin and A. Zumla, Real-time RT-PCR normalisation; strategies and considerations, Genes Immun.6(4) (2005) 279–284; https://doi.org/10.1038/sj.gene.6364190Search in Google Scholar
K. Goossens, M. Van Poucke, A. Van Soom, J. Vandesompele, A. Van Zeveren, and L. J. Peelman, Selection of reference genes for quantitative real-time PCR in bovine preimplantation embryos, BMC Dev. Biol.5(27) (2005) 1–9; https://doi.org/10.1186/1471-213X-5-27Search in Google Scholar
B. Kozera and M. Rapacz, Reference genes in real-time PCR, J. Appl. Genet. 54(4) (2013) 391–406; https://doi.org/10.1007/s13353-013-0173-xSearch in Google Scholar
A. Al-Sabah, P. Stadnik, S. J. Gilbert, V. C. Duance and E. J. Blain, Importance of reference gene selection for articular cartilage mechanobiology studies, Osteoarthritis Cartilage24(4) (2016) 719–730; https://doi.org/10.1016/j.joca.2015.11.007Search in Google Scholar
T. He, Y. Huang, J. C. Chak and R. M. Klar, Recommendations for improving accuracy of gene expression data in bone and cartilage tissue engineering, Sci. Rep.8(1) (2018) 1–13; https://doi.org/10.1038/s41598-018-33242-zSearch in Google Scholar
E. Ragni, M. Viganò, P. Rebulla, R. Giordano and L. Lazzari, What is beyond a qRT-PCR study on mesenchymal stem cell differentiation properties: how to choose the most reliable housekeeping genes, J. Cell Mol. Med. 17(1) (2013) 168–180; https://doi.org/10.1111/j.1582-4934.2012.01660.xSearch in Google Scholar
X. Yang, J. T. Hatfield, S. J. Hinze, X. Mu, P. J. Anderson and B. C. Powell, Bone to pick: the importance of evaluating reference genes for RT-qPCR quantification of gene expression in craniosynostosis and bone-related tissues and cells, BMC Res. Notes5(222) (2012) 1–9; https://doi.org/10.1186/1756-0500-5-222Search in Google Scholar
C. Kirschneck, P. Proff, J. Fanghänel, M. Wolf, J. C. Roldán and P. Römer, Reference genes for valid gene expression studies on rat dental, periodontal and alveolar bone tissue by means of RT-qPCR with a focus on orthodontic tooth movement and periodontitis, Ann. Anat. 204 (2016) 93–105; https://doi.org/10.1016/j.aanat.2015.11.005Search in Google Scholar
H. Han, L. Liu, M. Chen, Y. Liu, H. Wang and L. Chen, The optimal compound reference genes for qRT-PCR analysis in the developing rat long bones under physiological conditions and prenatal dexamethasone exposure model, Reprod. Toxicol. 98 (2020) 242–251; https://doi.org/10.1016/j.reprotox.2020.10.008Search in Google Scholar
R. Li, J. Ou, L. Li, Y. Yang, J. Zhao and R. Wu, The Wnt signaling pathway effector TCF7L2 mediates olanzapine-induced weight gain and insulin resistance, Front Pharmacol.9(379) (2018) 1–13; https://doi.org/10.3389/fphar.2018.00379Search in Google Scholar
Ł. Mokros, M. S. Karbownik, K. Nowakowska-Domagała, J. Szemraj, Ł. Wieteska, K. Woźniak, A. Witusik, A. Antczak and T. Pietras, Haloperidol, but not olanzapine, may affect expression of PER1 and CRY1 genes in human glioblastoma cell line, Biol. Rhythm Res.47(6) (2016) 865–871; https://doi.org/10.1080/09291016.2016.1202379Search in Google Scholar
Y. Yang, M. Shen, L. Li, Y. Long, L. Wang, B. Lang and R. Wu, Olanzapine promotes the occurrence of metabolic disorders in conditional TCF7L2-knockout mice, Front Cell Dev. Biol.10 (2022) 1–13; https://doi.org/10.3389/fcell.2022.890472Search in Google Scholar
H. Li, S. Peng, S. Li, S. Liu, Y. Lv, N. Yang, L. Yu, Y. Deng, Z. Zhang, M. Fang, Y. Huo, Y. Chen, T. Sun and W. Li, Chronic olanzapine administration causes metabolic syndrome through inflammatory cytokines in rodent models of insulin resistance, Sci. Rep. 9 (2019) 1–12; https://doi.org/10.1038/s41598-018-36930-ySearch in Google Scholar
A. Pałasz, P. Żarczyński, K. Bogus, K. Mordecka-Chamera, A. Della Vecchia, J. Skałbania, J. J. Worthington, M. Krzystanek and M. Żarczyńska, Modulatory effect of olanzapine on SMIM20/phoenixin, NPQ/spexin and NUCB2/nesfatin-1 gene expressions in the rat brainstem, Pharmacol. Reports73(4) (2021) 1188–1194; https://doi.org/10.1007/s43440-021-00267-7Search in Google Scholar
S. S. Evers, G. J. Boersma, K. L. Tamashiro, A. J. Scheurink and G. van Dijk, Roman high and low avoidance rats differ in their response to chronic olanzapine treatment at the level of body weight regulation, glucose homeostasis, and cortico-mesolimbic gene expression, J. Psychopharmacol.31(11) (2017) 1437–1452; https://doi.org/10.1177/0269881117724749Search in Google Scholar
M. He, Q. Zhang, C. Deng, T. Jin, X. Song, H. Wang and X. Huang, Time-dependent effects of olanzapine treatment on the expression of histidine decarboxylase, H1 and H3 receptor in the rat brain: The roles in olanzapine-induced obesity, Psychoneuroendocrinology85 (2017) 190–199; https://doi.org/10.1016/j.psyneuen.2017.08.022Search in Google Scholar
A. Uçok and W. Gaebel, Side effects of atypical antipsychotics: a brief overview, World Psychiatry7(1) (2008) 58–62; https://doi.org/10.1002/j.2051-5545.2008.tb00154.xSearch in Google Scholar
V. O’Keane and A. M. Meaney, Antipsychotic drugs: a new risk factor for osteoporosis in young women with schizophrenia? J. Clin. Psychopharmacol.25(1) (2005) 26–31; https://doi.org/10.1097/01.jcp.0000150223.31007.e0Search in Google Scholar
Y. Roke, P. N. van Harten, J. K. Buitelaar, D. E. Tenback, L. G. B. A. Quekel, Y. B. de Rijke and A. M. Boot, Bone mineral density in male adolescents with autism spectrum disorders and disruptive behavior disorder with or without antipsychotic treatment, Eur. J. Endocrinol.167(6) (2012) 855–863; https://doi.org/10.1530/EJE-12-0521Search in Google Scholar
B. Zhang, L. Deng, H. Wu, X. Lu, L. Peng, R. Wu, W. Guo, J. Chen, L. Li and J. Zhao, Relationship between long-term use of a typical antipsychotic medication by Chinese schizophrenia patients and the bone turnover markers serum osteocalcin and β-CrossLaps, Schizophr. Res. 176(2–3) (2016) 259–263; https://doi.org/10.1016/j.schres.2016.06.034Search in Google Scholar
D. Becker, O. Liver, R. Mester, M. Rapoport, A. Weizman and M. Weiss, Risperidone, but not olanzapine, decreases bone mineral density in female premenopausal schizophrenia patients, J. Clin. Psychiatry64(7) (2003) 761–766; https://doi.org/10.4088/jcp.v64n0704Search in Google Scholar
A. M. Meaney and V. O’Keane, Bone mineral density changes over a year in young females with schizophrenia: Relationship to medication and endocrine variables, Schizophr. Res.93(1–3) (2007) 136–143; https://doi.org/10.1016/j.schres.2007.01.013Search in Google Scholar
Y. Chen and B. A. Alman, Wnt pathway, an essential role in bone regeneration, J. Cell Biochem.106(3) (2009) 353–362; https://doi.org/10.1002/jcb.22020Search in Google Scholar
M. Drevensek, S. Sprogar, I. Boras and G. Drevensek, Effects of endothelin antagonist tezosentan on orthodontic tooth movement in rats, Am. J. Orthod. Dentofacial Orthop.129(4) (2006) 555–558; https://doi.org/10.1016/j.ajodo.2005.12.016Search in Google Scholar
S. Sprogar, T. Vaupotic, A. Cör, M. Drevensek and G. Drevensek, The endothelin system mediates bone modeling in the late stage of orthodontic tooth movement in rats, Bone43(4) (2008) 740–747; https://doi.org/10.1016/j.bone.2008.06.012Search in Google Scholar
A. Plut, S. Sprogar, G. Drevenšek, S. Hudoklin, J. Zupan, J. Marc and M. Drevenšek, Bone remodeling during orthodontic tooth movement in rats with type 2 diabetes, Am. J. Orthod. Dentofacial Orthop.148(6) (2015) 1017–1025; https://doi.org/10.1016/j.ajodo.2015.05.031Search in Google Scholar
C. L. Andersen, J. L. Jensen and T. F. Ørntoft, Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets, Cancer Res.64(15) (2004) 5245–5250; https://doi.org/10.1158/0008-5472.CAN-04-0496Search in Google Scholar
N. Silver, S. Best, J. Jiang and S. L. Thein, Selection of housekeeping genes for gene expression studies in human reticulocytes using real-time PCR, BMC Mol. Biol.7(33) (2006) 1–9; https://doi.org/https://doi.org/10.1186/1471-2199-7-33Search in Google Scholar
M. W. Pfaffl, A. Tichopad, C. Prgomet and T. P. Neuvians, Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper – Excel-based tool using pair-wise correlations, Biotechnol. Lett.26(6) (2004) 509–515; https://doi.org/10.1023/b:bile.0000019559.84305.47Search in Google Scholar
R. P. F. Abuna, F. S. Oliveira, J. I. R. Ramos, H. B. Lopes, G. P. Freitas, A. T. P. Souza, M. M. Beloti and A. L. Rosa, Selection of reference genes for quantitative real-time polymerase chain reaction studies in rat osteoblasts, J. Cell Physiol.234(1) (2018) 749–756; https://doi.org/10.1002/jcp.26886Search in Google Scholar
G. Elberg, D. Elberg, C. J. Logan, L. Chen and M. A. Turman, Limitations of commonly used internal controls for real-time RT-PCR analysis of renal epithelial-mesenchymal cell transition, Nephron Exp. Nephrol.102(3–4) (2006) 113–122; https://doi.org/10.1159/000090070Search in Google Scholar
T. Fink, P. Lund, L. Pilgaard, J. G. Rasmussen, M. Duroux and V. Zachar, Instability of standard PCR reference genes in adipose-derived stem cells during propagation, differentiation and hypoxic exposure, BMC Mol. Biol.9(98) (2008) 1–9; https://doi.org/10.1186/1471-2199-9-98Search in Google Scholar
S. Selvey, E. W. Thompson, K. Matthaei, R. A. Lea, M. G. Irving and L. R. Griffiths, Beta-actin – an unsuitable internal control for RT-PCR, Mol. Cell Probes15(5) (2001) 307–311; https://doi.org/10.1006/mcpr.2001.0376Search in Google Scholar
D. Studer, S. Lischer, W. Jochum, M. Ehrbar, M. Zenobi-Wong and K. Maniura-Weber, Ribosomal protein L13a as a reference gene for human bone marrow-derived mesenchymal stromal cells during expansion, adipo-, chondro-, and osteogenesis, Tissue Eng. Part C Methods18(10) (2012) 761–771; https://doi.org/10.1089/ten.TEC.2012.0081Search in Google Scholar
C. Tricarico, P. Pinzani, S. Bianchi, M. Paglierani, V. Distante, M. Pazzagli, S. A. Bustin and C. Orlando, Quantitative real-time reverse transcription polymerase chain reaction: normalization to rRNA or single housekeeping genes is inappropriate for human tissue biopsies, Anal. Biochem.309(2) (2002) 293–300; https://doi.org/10.1016/s0003-2697(02)00311-1Search in Google Scholar
F. G. Quiroz, O. M. Posada, D. Gallego-Perez, N. Higuita-Castro, C. Sarassa, D. J. Hansford, P. Agudelo-Florez and L. E López, Housekeeping gene stability influences the quantification of osteogenic markers during stem cell differentiation to the osteogenic lineage, Cytotechnology62(2) (2010) 109–120; https://doi.org/10.1007/s10616-010-9265-1Search in Google Scholar
H. Ma, Q. Yang, D. Li and J. Liu, Validation of suitable reference genes for quantitative polymerase chain reaction analysis in rabbit bone marrow mesenchymal stem cell differentiation, Mol. Med. Rep.12(2) (2015) 2961–2968; https://doi.org/10.3892/mmr.2015.3776Search in Google Scholar
A. S. Stephens, S. R. Stephens and N. A. Morrison, Internal control genes for quantitative RT-PCR expression analysis in mouse osteoblasts, osteoclasts and macrophages, BMC Res. Notes4(410) (2011) 1–9; https://doi.org/10.1186/1756-0500-4-410Search in Google Scholar
M. Lunder, G. Drevenšek, D. Černe, J. Marc, M. Janić and M. Šabovič, Treatment with low-dose atorvastatin, losartan, and their combination increases expression of vasoactive-related genes in rat aortas, J. Cardiovasc. Pharmacol. Ther. 18(2) (2013) 177–1783; https://doi.org/10.1177/1074248412463966Search in Google Scholar
M. Janic, M. Lunder, D. Cerne, J. Marc, A. Jerin, M. Skitek, G. Drevensek and M. Sabovic, The “rise-peak-fall” pattern of time dependency of the cardiovascular pleiotropic effects of treatment with low-dose atorvastatin, losartan, and a combination thereof in rats, J. Cardiovas.c Pharmacol.68(1) (2016) 74–80; https://doi.org/10.1097/FJC.0000000000000393Search in Google Scholar