INFORMAZIONI SU QUESTO ARTICOLO

Cita

F. L. J. Visseren, F. Mach, Y. M. Smulders, D. Carballo, K. C. Koskinas, M. Bäck, A. Benetos, A. Biffi, M. .J. Boavida, D. Capodanno, B. Cosyns, C. Crawford, C. H. Davos, I. Desormais, E. Di Angelan-tonio, O. Franco, S. Halvorsen, R. F. Hobbs, M. Hollander, E. Jankowska, M. Michal, S. Sacco, N. Sattar, L. Tokgozoglu, S. Tonstad, K. P Tsioufis, I. van Dis, I. van Gelder, C. Wanner and B. Williams, ESC Scientific Document Group. 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice: Developed by the Task Force for cardiovascular disease prevention in clinical practice with representatives of the European Society of Cardiology and 12 medical societies with the special contribution of the European Association of Preventive Cardiology (EAPC), Eur. Heart J. 42(34) (2021) 3227–3337; https://doi.org/10.1093/eurheartj/ehab484Search in Google Scholar

F. Mach, C. Baigent, A. L. Catapano, K. C. Koskinas, M. Casula, L. Badimon, M. J. Chapman, G. G. De Backer, V. Delgado, I. M. Graham, A. Halliday, U. Landmesser, G. Riccardi, D. J. Richter, M. S. Sabatine, M. Taskinen, L. Tokgozoglu and O. Wiklund, ESC Scientific Document Group. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk: The Task Force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and European Atherosclerosis Society (EAS), European Heart Journal 41(1) (2020) 111–188; https://doi.org/10.1093/eurheartj/ehz455Search in Google Scholar

A. J. Kattoor, N. V. K. Pothineni, D. Palagiri and J. Mehta, Oxidative stress in atherosclerosis, Curr. Atheroscler. Rep. 19 (2017) Article ID 42; https://doi.org/10.1007/s11883-017-0678-6Search in Google Scholar

T. Senoner and W. Dichtl, Oxidative Stress in Cardiovascular Diseases: Still a Therapeutic Target?, Nutrients 11 (2019) Article ID 2090 (25 pages); https://doi.org/10.3390/nu11092090Search in Google Scholar

J. Tuñón, M. Bäck, L. Badimón, M. Bochaton-Piallat, B. Cariou, M. J. Daemen, J. Egido, P. Evans, S. E. Francis, D. Ketelhuth, E. Lutgens, C. M. Matter, C. Monaco, S. Steffens, C. Weber and I. E. Hoefer, on behalf of the ESC Working Group on Atherosclerosis and Vascular Biology. Interplay between hypercholesterolaemia and inflammation in atherosclerosis: Translating experimental targets into clinical practice, Eur. J. Prev. Cardiol. 25(9) (2018) 948–955; https://doi.org/10.1177/2047487318773384Search in Google Scholar

K. B. Uribe, A. Benito-Vicente, C. Martin, F. Blanco-Vaca and N. Rotllan, (r)HDL in theranostics: how do we apply HDL’s biology for precision medicine in atherosclerosis management? Biomater. Sci. 9 (2021) 3185–3208; https://doi.org/10.1039/D0BM01838DSearch in Google Scholar

C. B. Afonso and C. M. Spickett, Lipoproteins as targets and markers of lipoxidation, Redox Biol. 23 (2019) Article ID 101066 (16 pages); https://doi.org/10.1016/j.redox.2018.101066Search in Google Scholar

S. Kajani, S. Curley and F. C. McGillicuddy, Unravelling HDL-looking beyond the cholesterol surface to the quality within, Int. J. Mol. Sci. 19(7) (2018) Article ID 1971 (23 pages); https://doi.org/10.3390/ijms19071971Search in Google Scholar

E. M. Stakhneva, E. V. Striukova and Y. I. Ragino, Proteomic studies of blood and vascular wall in atherosclerosis, Int. J. Mol. Sci. 22(24) (2021) Article ID 13267 (17 pages); https://doi.org/10.3390/ijms222413267Search in Google Scholar

J. C. Torres-Romero, J. C. Lara-Riegos, E. Parra, V. Sánchez, V. E. Arana-Argáez, S. Uc-Colli, M. Peña-Rico, M. A. Ramírez-Camacho, M. Regalado and M. E. Alvarez-Sánchez, Lipoproteomics: Methodologies and Analysis of Lipoprotein-Associated Proteins along with the Drug Intervention, in Drug Design – Novel Advances in the Omics Field and Applications (Ed. A. A. Parikesit), IntechOpen, Jakarta 2020.Search in Google Scholar

J. T. Wilkins and H. S. Seckler, HDL modification: recent developments and their relevance to atherosclerotic cardiovascular disease, Curr. Opin. Lipidol. 30(1) (2019) 24–29; https://doi.org/10.1097/MOL.0000000000000571Search in Google Scholar

W. S. Davidson, A. S. Shah, H. Sexmith and S. M. Gordon, The HDL Proteome Watch: Compilation of studies leads to new insights on HDL function, Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1867(2) (2022) Article ID 159072; https://doi.org/10.1016/j.bbalip.2021.159072Search in Google Scholar

R. J. Havel, H. A. Eder and J. Bragdon, The distribution and chemical composition of ultracentrifugally separated lipoproteins in human serum, J. Clin. Invest. 34(9) (1955) 1345–1353; https://doi.org/10.1172/JCI103182Search in Google Scholar

E. de Juan-Franco, A. Pérez, V. Ribas, J. Sánchez-Hernández, F. Blanco-Vaca, J. Ordóñez-Llanos and J. Sánchez-Quesada, Standardization of a method to evaluate the antioxidant capacity of high-density lipoproteins, Int. J. Biomed. Sci. 5(4) (2009) 402–410.Search in Google Scholar

Y. Q. Yu, M. Gilar, P. J. Lee, E. Bouvier and J. Gebler, Enzyme-friendly mass spectrometry-compatible surfactant for in-solution enzymatic digestion of proteins, Anal. Chem. 75(21) (2003) 6023–6028; https://doi.org/10.1021/ac0346196Search in Google Scholar

K. Davalieva, S. Kiprijanovska, A. Dimovski, G. Rosoklija and A. J. Dwork, Comparative evaluation of two methods for LC-MS/MS proteomic analysis of formalin fixed and paraffin embedded tissues, J. Proteomics 235 (2021) Article ID 104117; https://doi.org/10.1016/j.jprot.2021.104117Search in Google Scholar

J. C. Silva, R. Denny, C. Dorschel, M. Gorenstein, I. Kass, G. Z Li, T. McKenna, M. J. Nold, K. Richardson and P. Young, Quantitative proteomic analysis by accurate mass retention time pairs, Anal. Chem. 77(7) (2005) 2187–2200; https://doi.org/10.1021/ac048455kSearch in Google Scholar

U. Distler, J. Kuharev, P. Navarro and S. Tenzer, Label-free quantification in ion mobility-enhanced data-independent acquisition proteomics, Nat. Protoc. 11 (2016) 795–812; https://doi.org/10.1038/nprot.2016.042Search in Google Scholar

G. E. Ronsein and T. Vaisar, Deepening our understanding of HDL proteome, Expert Rev. Proteomics 16 (2019) 749–760; https://doi.org/10.1080/14789450.2019.1650645Search in Google Scholar

W. S. Davidson, A. S. Shah, H. Sexmith and S. M. Gordon, The HDL proteome watch: Compilation of studies leads to new insights on HDL function, Biochim. Biophys. Acta Mol. Cell. Bio.l Lipids 1867(2) (2022) Article ID 159072; https://doi.org/10.1016/j.bbalip.2021.159072Search in Google Scholar

A. S. Shah, L. Tan, J. Long and W. S. Davidson, Proteomic diversity of high density lipoproteins: our emerging understanding of its importance in lipid transport and beyond, J. Lipid Res. 54(10) (2013) 2575–2585; https://doi.org/10.1194/jlr.R035725Search in Google Scholar

S. M. Gordon and A. T. Remaley, High density lipoproteins are modulators of protease activity: implications in inflammation, complement activation, and atherothrombosis, Atherosclerosis 259 (2017) 104–113; https://doi.org/10.1016/j.atherosclerosis.2016.11.015Search in Google Scholar

Y. Yu, Y. Cui, Y. Zhao, S. Liu, G. Song, P. Jiao, B. Li, T. Luo, S. Guo, X. Zhang, H. Wang, X. Jiang and S. Qin, The binding capability of plasma phospholipid transfer protein, but not HDL pool size, is critical to repress LPS induced inflammation, Sci. Rep. 6 (2016) Article ID 20845 (12 pages); https://doi.org/10.1038/srep20845Search in Google Scholar

A. S. Greene and S. L. Hajduk, Trypanosome lytic Factor-1 initiates oxidation-stimulated osmotic lysis of trypanosoma brucei brucei, J. Biol. Chem. 291(6) (2016) 3063–3075; https://doi.org/10.1074/jbc.M115.680371Search in Google Scholar

X. Xu, Y. Wang, C. M. Spring, J. Jin, H. Yang, M. Neves, P. Chen, Y. Yang, R. C. Gallant, J. Song, P. Ke, D. Zhang, N. Carrim, S. Yu, G. Zhu, Y. She, P. Chonelly, M. L. Rand, K. Adeli, J. Freedman, P. Marchese, W. S. Davidson, S. Jackson, C. Zhu and Z. Ruggeri, Apolipoprotein A-IV binds alphaIIbbeta3 integrin and inhibits thrombosis, Nat. Commun. 9(3) (2018) Article ID 3608 (18 pages); https://doi.org/10.1038/s41467-018-05806-0Search in Google Scholar

E. Reis, D. Mastellos, G. Hajishengallis and J. Lambris, New insights into the immune functions of complement, Nat. Rev. Immunol. 19 (2019) 503–516; https://doi.org/10.1038/s41577-019-0168-xSearch in Google Scholar

D. Alkam, E. Feldman, A. Singh and M. Kiaei, Profilin1 biology and its mutation, actin(g) in disease, Cell Mol. Life Sci. 74 (2017) 967–981; https://doi.org/10.1007/s00018-016-2372-1Search in Google Scholar

A. Allen, D. Gau, P. Roy, The role of profilin-1 in cardiovascular diseases, J. Cell Sci. 134(9) (2021) Article ID jcs249060 (11 pages); https://doi.org/10.1242/jcs.249060Search in Google Scholar

E. Caglayan, G. Romeo, K. Kappert, M. Odenthal, M. Südkamp, S. Body, S. Shernan, D. Hackbusch and S. Rosenkranz, Profilin-1 is expressed in human atherosclerotic plaques and induces atherogenic effects on vascular smooth muscle cells, PLoS One 5(10) (2010) e13608 (9 pages); https://doi.org/10.1371/journal.pone.0013608Search in Google Scholar

G. Romeo, M. Pae, D. Eberlé, J. Lee and S. Shoelson, Profilin-1 haploinsufficiency protects against obesity-associated glucose intolerance and preserves adipose tissue immune homeostasis, Diabetes 62(11) (2013) 3718–3726; https://doi.org/10.2337/db13-0050Search in Google Scholar

B. Kasper and F. Petersen, Molecular pathways of platelet factor 4/CXCL4 signaling, Eur. J. Cell Biol. 90(6–7) (2011) 521–526; https://doi.org/10.1016/j.ejcb.2010.12.002Search in Google Scholar

L. Lasagni, R. Grepin, B. Mazzinghi, E. Lazzeri, C. Meini, F. Frosali, E. Ronconi, N. Alain-Courtois, L. Ballerini, G. Netti, F. Maggi, F. Annunziato, M. Serio, S. Romagnani, A. Bikfalvi and P. Romagnani, PF-4/CXCL4 and CXCL4L1 exhibit distinct subcellular localization and a differentially regulated mechanism of secretion, Blood 109(10) (2007) 4127–4134; https://doi.org/10.1182/blood-2006-10-052035Search in Google Scholar

J. Vandercappellen, J. Van Damme and S. Struyf, The role of the CXC chemokines platelet factor-4 (CXCL4/PF-4) and its variant (CXCL4L1/PF-4var) in inflammation, angiogenesis and cancer, Cytokine Growth Factor Rev. 22(1) (2011) 1–18; https://doi.org/10.1016/j.cytogfr.2010.10.011Search in Google Scholar

M. Gouwy, P. Ruytinx, E. Radice, F. Claudi, K. Van Raemdonck and S. Struyf, CXCL4 and CXCL4L1 Differentially Affect Monocyte Survival and Dendritic Cell Differentiation and Phagocytosis, PLoS One 11(11) (2016) e0166006 (24 pages); https://doi.org/10.1371/journal.pone.0166006Search in Google Scholar

K. Bledzka, S. Smyth and E. Plow, Integrin αIIbβ3: from discovery to efficacious therapeutic target, Circ. Res. 112(8) (2013) 1189–1200; https://doi.org/10.1161/CIRCRESAHA.112.300570Search in Google Scholar

E. Dupree, M. Jayathirtha, H. Yorkey, M. Mihasan, B. Petre and C. Darie, A critical review of bottom-up proteomics: The good, the bad, and the future of this field, Proteomes 8(3) (2020) Article ID 14; https://doi.org/10.3390/proteomes8030014Search in Google Scholar

eISSN:
1846-9558
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Pharmacy, other