Accesso libero

α1-Adrenoceptor agonist methoxamine inhibits base excision repair via inhibition of apurinic/apyrimidinic endonuclease 1 (APE1)

INFORMAZIONI SU QUESTO ARTICOLO

Cita

B. Rabinowitz, L. Chuck, M. Kligerman and W. Parmley, Positive inotropic effects of methoxamine: evidence for alpha-adrenergic receptors in ventricular myocardium, Am. J. Physiol.-Leg. Content 229(3) (1975) 582–585; https://doi.org/10.1152/ajplegacy.1975.229.3.582 Search in Google Scholar

S. Sun, D. Sun, L. Yang, J. Han, R. Liu and L. Wang, Dose-dependent effects of intravenous methoxamine infusion during hip-joint replacement surgery on postoperative cognitive dysfunction and blood TNF-α level in elderly patients: a randomized controlled trial, BMC Anesthesiol. 17(1) (2017) Article ID 75 (10 pages); https://doi.org/10.1186/s12871-017-0367-6 Search in Google Scholar

L. Wang, Effects of continuous intravenous infusion of methoxamine on the intraoperative hemodynamics of elderly patients undergoing total hip arthroplasty, Med. Sci. Monit. 20 (2014) 1969–1976; https://doi.org/10.12659/MSM.890760 Search in Google Scholar

J. P. Griffin and P. F. D’Arcy, A Manual of Adverse Drug Interactions, 5th ed., Elsevier Science, New York 1997, pp. 236–275; https://doi.org/10.1016/B978-0-444-82406-6.X5000-X Search in Google Scholar

F. Fu, T. Yu-Wen, C. Hong, C. C. Jiao, N. Ma and X.-Z. Chen, A randomised dose-response study of prophylactic methoxamine infusion for preventing spinal-induced hypotension during cesarean delivery, BMC Anesthesiol. 20(1) (2020) 198–208; https://doi.org/10.1186/s12871-020-01119-2 Search in Google Scholar

C. P. Weiner and C. Buhimschi, Drugs for Pregnant and Lactating Women, 2nd ed., W.B. Saunders, Philadelphia 2007, pp. 616–745; https://doi.org/10.1016/B978-1-4160-4013-2.00012-0 Search in Google Scholar

J. A. D. Simpson, D. Bush, H. J. Gruss, A. Jacobs, C. Pediconi and J. H. Scholefield, A randomised, controlled, crossover study to investigate the safety and response of 1R,2S-methoxamine hydrochlo-ride (NRL001) on anal function in healthy volunteers, Colorectal Dis. 16(1) (2014) 5–15; https://doi.org/10.1111/codi.12541 Search in Google Scholar

M. Krutá, L. Bálek, R. Hejnová, Z. Dobšáková, L. Eiselleová, K. Matulka, T. Bárta, P. Fojtík, J. Fajkus, A. Hampl, P. Dvořák and V. Rotrekl, Decrease in abundance of apurinic/apyrimidinic endonuclease causes failure of base excision repair in culture-adapted human embryonic stem cells, Stem Cells 31(4) (2013) 693–702; https://doi.org/10.1002/stem.1312 Search in Google Scholar

M. Krutá, M. Šeneklová, J. Raška, A. Salykin, L. Zerzánková, M. Pešl, E. Bártová, M. Franek, A. Baumeisterová, S. Košková, K. J. Neelsen, A. Hampl, P. Dvořák and V. Rotrekl, Mutation frequency dynamics in HPRT locus in culture-adapted human embryonic stem cells and induced pluripotent stem cells correspond to their differentiated counterparts, Stem Cells Dev. 23(20) (2014) 2443–2454; https://doi.org/10.1089/scd.2013.0611 Search in Google Scholar

N. Puebla-Osorio, D. B. Lacey, F. W. Alt and C. Zhu, Early embryonic lethality due to targeted inactivation of DNA ligase III, Mol. Cell. Biol. 26(10) (2006) 3935–3941; https://doi.org/10.1128/MCB.26.10.3935-3941.2006 Search in Google Scholar

D. C. Cabelof, J. J. Raffoul, S. Yanamadala, C. Ganir, Z. Guo and A. R. Heydari, Attenuation of DNA polymerase β-dependent base excision repair and increased DMS-induced mutagenicity in aged mice, Mutat. Res. Mol. Mech. Mutagen. 500(1–2) (2002) 135–145; https://doi.org/10.1016/S0027-5107(02)00003-9 Search in Google Scholar

G. W. Intano, E. J. Cho, C. A. McMahan and C. A. Walter, Age-related base excision repair activity in mouse brain and liver nuclear extracts, J. Gerontol. A. Biol. Sci. Med. Sci. 58(3) (2003) B205–B211; https://doi.org/10.1093/gerona/58.3.B205 Search in Google Scholar

G. W. Intano, C. A. McMahan, J. R. McCarrey, R. B. Walter, A. E. McKenna, Y. Matsumoto, M. A. MacInnes, D. J. Chen and C. A. Walter, Base excision repair is limited by different proteins in male germ cell nuclear extracts prepared from young and old mice, Mol. Cell. Biol. 22(7) (2002) 2410–2418; https://doi.org/10.1128/MCB.22.7.2410-2418.2002 Search in Google Scholar

J. R. Sanchez, T. L. Reddick, M. Perez, V. E. Centonze, S. Mitra, T. Izumi, C. A. McMahan and C. A. Walter, Increased human AP endonuclease 1 level confers protection against the paternal age effect in mice, Mutat. Res. Mol. Mech. Mutagen. 779 (2015) 124–133; https://doi.org/10.1016/j.mrfmmm.2015.06.008 Search in Google Scholar

A. Kohutova, J. Raška, M. Kruta, M. Seneklova, T. Barta, P. Fojtik, T. Jurakova, C. A. Walter, A. Hampl, P. Dvorak and V. Rotrekl, Ligase 3-mediated end-joining maintains genome stability of human embryonic stem cells, FASEB J. 33(6) (2019) 6778–6788; https://doi.org/10.1096/fj.201801877RR Search in Google Scholar

L. Haracska, Roles of yeast DNA polymerases delta and zeta and of Rev1 in the bypass of abasic sites, Genes Dev. 15(8) (2001) 945–954; https://doi.org/10.1101/gad.882301 Search in Google Scholar

L. Haracska, M. T. Washington, S. Prakash and L. Prakash, Inefficient bypass of an abasic site by DNA polymerase η, J. Biol. Chem. 276(9) (2001) 6861–6866; https://doi.org/10.1074/jbc.M008021200 Search in Google Scholar

K. Sugasawa, J. M. Y. Ng, C. Masutani, S. Iwai, P. J. van der Spek, A. P. M. Eker, F. Hanaoka, D. Bootsma and J. H. J. Hoeijmakers, Xeroderma pigmentosum group C protein complex is the initiator of global genome nucleotide excision repair, Mol. Cell 2(2) (1998) 223–232; https://doi.org/10.1016/S1097-2765(00)80132-X Search in Google Scholar

S. Kumar, S. Talluri, J. Pal, X. Yuan, R. Lu, P. Nanjappa, M. K. Samur, N. C. Munshi and M. A. Shammas, Role of apurinic/apyrimidinic nucleases in the regulation of homologous recombination in myeloma: mechanisms and translational significance, Blood Cancer J. 8(10) (2018) 92–102; https://doi.org/10.1038/s41408-018-0129-9 Search in Google Scholar

M. Liuzzi and M. Talpaert-Borlé, A new approach to the study of the base-excision repair pathway using methoxyamine, J. Biol. Chem. 260(9) (1985) 5252–5258; https://doi.org/10.1016/S0021-9258(18) 89014-7 Search in Google Scholar

C. A. Schneider, W. S. Rasband and K. W. Eliceiri, NIH Image to ImageJ: 25 years of image analysis, Nat. Methods 9(7) (2012) 671–675; https://doi.org/10.1038/nmeth.2089 Search in Google Scholar

B. M. Brenerman, J. L. Illuzzi and D. M. Wilson, Base excision repair capacity in informing healthspan, Carcinogenesis 35(12) (2014) 2643–2652; https://doi.org/10.1093/carcin/bgu225 Search in Google Scholar

D. M. Wilson and L. H. Thompson, Life without DNA repair, Proc. Natl. Acad. Sci. 94(24) (1997) 12754–12757; https://doi.org/10.1073/pnas.94.24.12754 Search in Google Scholar

M. Li, X. Yang, X. Lu, N. Dai, S. Zhang, Y. Cheng, L. Zhang, Y. Yang, Y. Liu, Z. Yang, D. Wang and D. M. Wilson, APE1 deficiency promotes cellular senescence and premature aging features, Nucleic Acids Res. 46(11) (2018) 5664–5677; https://doi.org/10.1093/nar/gky326 Search in Google Scholar

K. L. Limpose, K. S. Trego, Z. Li, S. W. Leung, A. H. Sarker, J. A. Shah, S. S. Ramalingam, E. M. Werner, W. S. Dynan, P. K. Cooper, A. H. Corbett and P. W. Doetsch, Overexpression of the base excision repair NTHL1 glycosylase causes genomic instability and early cellular hallmarks of cancer, Nucleic Acids Res. 46(9) (2018) 4515–4532. https://doi.org/10.1093/nar/gky162 Search in Google Scholar

S. Vlahopoulos, M. Adamaki, N. Khoury, V. Zoumpourlis and I. Boldogh, Roles of DNA repair enzyme OGG1 in innate immunity and its significance for lung cancer, Pharmacol. Ther. 194 (2019) 59–72; https://doi.org/10.1016/j.pharmthera.2018.09.004 Search in Google Scholar

M. Goto, K. Shinmura, H. Igarashi, M. Kobayashi, H. Konno, H. Yamada, M. Iwaizumi, S. Kageyama, T. Tsuneyoshi, S. Tsugane and H. Sugimura, Altered expression of the human base excision repair gene NTH1 in gastric cancer, Carcinogenesis 30(8) (2009) 1345–1352; https://doi.org/10.1093/carcin/bgp108 Search in Google Scholar

X. Xiao, Y. Yang, Y. Ren, D. Zou, K. Zhang and Y. Wu, rs1760944 polymorphism in the APE1 region is associated with risk and prognosis of osteosarcoma in the chinese han population, Sci. Rep. 7(1) (2017) 9331–9341; https://doi.org/10.1038/s41598-017-09750-9 Search in Google Scholar

M. Li, D. Wang, S. Zhang, L. He and N. Dai, Identification of APE1 as a chemotherapeutic prognostic marker for non-small cell lung cancer patients, J. Clin. Oncol. 34(15) (2016) Article ID e23065; https://doi.org/10.1200/JCO.2016.34.15_suppl.e23065 Search in Google Scholar

J. J. Raffoul, A. R. Heydari and G. G. Hillman, DNA repair and cancer therapy: Targeting APE1/Ref-1 using dietary agents, J. Oncol. 2012 (2012) 1–11; https://doi.org/10.1155/2012/370481 Search in Google Scholar

V. Singh-Gupta, H. Zhang, S. Banerjee, D. Kong, J. J. Raffoul, F. H. Sarkar and G. G. Hillman, Radiation-induced HIF-1α cell survival pathway is inhibited by soy isoflavones in prostate cancer cells, Int. J. Cancer 124(7) (2009) 1675–1684; https://doi.org/10.1002/ijc.24015 Search in Google Scholar

Z. Wang, W. Xu, Z. Lin, C. Li, Y. Wang, L. Yang, G. Liu, Reduced apurinic/apyrimidinic endonuclease activity enhances the antitumor activity of oxymatrine in lung cancer cells, Int. J. Oncol. 49(6) (2016) 2331–2340; https://doi.org/10.3892/ijo.2016.3734 Search in Google Scholar

K. A. Ziel, C. C. Campbell, G. L. Wilson and M. N. Gillespie, Ref-1/Ape is critical for formation of the hypoxia-inducible transcriptional complex on the hypoxic response element of the rat pulmonary artery endothelial cell VEGF gene, FASEB J. 18(9) (2004) 986–988; https://doi.org/10.1096/fj.03-1160fje Search in Google Scholar

X. Gu, Y. Cun, M. Li, Y. Qing, F. Jin, Z. Zhong, N. Dai, C. Qian, J. Sui and D. Wang, Human apurinic/apyrimidinic endonuclease siRNA inhibits the angiogenesis induced by X-ray irradiation in lung cancer cells, Int. J. Med. Sci. 10(7) (2013) 870–882; https://doi.org/10.7150/ijms.5727 Search in Google Scholar

P. Sawides, Y. Xu, L. Liu, J. A. Bokar, P. Silverman, A. Dowlati and S. L. Gerson, Pharmacokinetic profile of the base-excision repair inhibitor methoxyamine-HCl (TRC102; MX) given as an one-hour intravenous infusion with temozolomide (TMZ) in the first-in-human phase I clinical trial, J. Clin. Oncol. 28(15) (2010) Article ID e13662; https://doi.org/10.1200/jco.2010.28.15_suppl.e13662 Search in Google Scholar

S. Madlener, T. Strobel, S. Vose, O. Saydam, B. D. Price, B. Demple and N. Saydam, Essential role for mammalian apurinic/apyrimidinic (AP) endonuclease Ape1/Ref-1 in telomere maintenance, Proc. Natl. Acad. Sci. 110(44) (2013) 17844–17849; https://doi.org/10.1073/pnas.1304784110 Search in Google Scholar

E. Huang, D. Qu, Y. Zhang, K. Venderova, M. E. Haque, M. W. C. Rousseaux, R. S. Slack, J. M. Woulfe and D. S. Park, The role of Cdk5-mediated apurinic/apyrimidinic endonuclease 1 phosphorylation in neuronal death, Nat. Cell Biol. 12(6) (2010) 563–571; https://doi.org/10.1038/ncb2058 Search in Google Scholar

V. Davydov, L. A. Hansen and D. A. Shackelford, Is DNA repair compromised in Alzheimer’s disease?, Neurobiol. Aging 24(7) (2003) 953–968; https://doi.org/10.1016/S0197-4580(02)00229-4 Search in Google Scholar

A. K. Mantha, M. Dhiman, G. Taglialatela, R. J. Perez-Polo and S. Mitra, Proteomic study of amyloid beta (25–35) peptide exposure to neuronal cells: Impact on APE1/Ref-1’s protein-protein interaction, J. Neurosci. Res. 90(6) (2012) 1230–1239; https://doi.org/10.1002/jnr.23018 Search in Google Scholar

Z. Tan, L. Shi and S. S. Schreiber, Differential expression of redox factor-1 associated with beta-amyloid-mediated neurotoxicity, Open Neurosci. J. 3 (2009) 26–34; https://doi.org/10.2174/1874082000903010026 Search in Google Scholar

A. Y. Shaikh and L. J. Martin, DNA base-excision repair enzyme apurinic/apyrimidinic endonuclease/redox factor-1 is increased and competent in the brain and spinal cord of individuals with amyotrophic lateral sclerosis, NeuroMolecular Med. 2(1) (2002) 47–60; https://doi.org/10.1007/s12017-002-0038-7 Search in Google Scholar

P. J. Nisar, H.-J. Gruss, D. Bush, N. Barras, A. G. Acheson and J. H. Scholefield, Intra-anal and rectal application of L-erythro methoxamine gel increases anal resting pressure in healthy volunteers, Br. J. Surg. 92(12) (2005) 1539–1545; https://doi.org/10.1002/bjs.5171 Search in Google Scholar

P. J. Nisar, H.-J. Gruss, D. Bush, A. G. Acheson and J. H. Scholefield, Intra-anal application of l-erythro methoxamine gel increases anal resting pressure in patients with incontinence, Br. J. Surg. 94(9) (2007) 1155–1161; https://doi.org/10.1002/bjs.5821 Search in Google Scholar

S. Rayment, T. Eames, J. Simpson, M. Dashwood, Y. Henry, H. Gruss, A. Acheson, J. Scholefield and V. Wilson, Investigation of the distribution and function of α-adrenoceptors in the sheep isolated internal anal sphincter: α-Adrenoceptor function in sheep anal sphincter, Br. J. Pharmacol. 160(7) (2010) 1727–1740; https://doi.org/10.1111/j.1476-5381.2010.00842.x Search in Google Scholar

L. Siproudhis, W. Graf, A. Emmanuel, D. Walker, R. N. K. Shing, C. Pediconi, J. Pilot, S. Wexner and J. Scholefield, Libertas: a phase II placebo-controlled study of NRL001 in patients with faecal incontinence showed an unexpected and sustained placebo response, Int. J. Colorectal Dis. 31(6) (2016) 1205–1216; https://doi.org/10.1007/s00384-016-2585-7 Search in Google Scholar

R. Lamboy-Caraballo, C. Ortiz-Sanchez, A. Acevedo-Santiago, J. Matta, A. N. A. Monteiro and G. N. Armaiz-Pena, Norepinephrine-induced DNA damage in ovarian cancer cells, Int. J. Mol. Sci. 21(6) (2020) 2250–2264; https://doi.org/10.3390/ijms21062250 Search in Google Scholar

D. Topalović, D. Dekanski, B. Spremo-Potparević, N. Djelić, V. Bajić and L. Živković, Assessment of adrenaline-induced DNA damage in whole blood cells with the comet assay, Arch. Ind. Hyg. Toxicol. 69(4) (2018) 304–308; https://doi.org/10.2478/aiht-2018-69-3154 Search in Google Scholar

F. Sun, X.-P. Ding, S.-M. An, Y.-B. Tang, X.-J. Yang, L. Teng, C. Zhang, Y. Shen, H.-Z. Chen and L. Zhu, Adrenergic DNA damage of embryonic pluripotent cells via β2 receptor signalling, Sci. Rep. 5 (2015) 15950–15962; https://doi.org/10.1038/srep15950 Search in Google Scholar

M. R. Hara, J. J. Kovacs, E. J. Whalen, S. Rajagopal, R. T. Strachan, W. Grant, A. J. Towers, B. Williams, C. M. Lam, K. Xiao, S. K. Shenoy, S. G. Gregory, S. Ahn, D. R. Duckett and R. J. Lefkowitz, A stress response pathway regulates DNA damage through β2-adrenoreceptors and β-arrestin-1, Nature 477(7364) (2011) 349–353; https://doi.org/10.1038/nature10368 Search in Google Scholar

P. Fortini, S. Rosa, A. Zijno, A. Calcagnile, M. Bignami and E. Dogliotti, Methoxyamine modification of abasic sites protects CHO cells from the cytotoxic and mutagenic effects of oxygen alkylation, Carcinogenesis 13(1) (1992) 87–93; https://doi.org/10.1093/carcin/13.1.87 Search in Google Scholar

S. Rosa, P. Fortini, P. Karran, M. Bignami and E. Dogliotti, Processing in vitro of an abasic site reacted with methoxyamine: a new assay for the detection of abasic sites formed in vivo, Nucleic Acids Res. 19(20) (1991) 5569–5574; https://doi.org/10.1093/nar/19.20.5569 Search in Google Scholar

M. Talpaert-Borle and M. Liuzzi, Reaction of apurinic/apyrimidinic sites with [14C]methoxyamine, Biochim. Biophys. Acta BBA – Gene Struct. Expr. 740(4) (1983) 410–416; https://doi.org/10.1016/0167-4781(83)90089-1 Search in Google Scholar

R. J. Lewis, Sax’s Dangerous Properties of Industrial Materials, 10th ed., Wiley-Interscience, New York 2000, pp. 4770–4770; https://doi.org/10.1002/0471701343 Search in Google Scholar

eISSN:
1846-9558
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Pharmacy, other