Accesso libero

Sodium butyrate attenuate hyperglycemia-induced inflammatory response and renal injury in diabetic mice

INFORMAZIONI SU QUESTO ARTICOLO

Cita

1. O. Ojo, Dietary intake and type 2 diabetes, Nutrients 11(9) (2019) Article ID 2177; https://doi.org/10.3390/nu11092177676966431514301 Search in Google Scholar

2. R. E. Perez-Morales, M. D. Del Pino, J. M. Valdivielso, A. Ortiz, C. Mora-Fernandez and J. F. Navarro-Gonzalez, Inflammation in diabetic kidney disease, Nephron 143(1) (2019) 12–16; https://doi.org/10.1159/00049327830273931 Search in Google Scholar

3. E. Rendra, V. Riabov, D. M. Mossel, T. Sevastyanova, M. C. Harmsen and J. Kzhyshkowska, Reactive oxygen species (ROS) in macrophage activation and function in diabetes, Immunobiology 224(2) (2019) 242–253; https://doi:10.1016/j.imbio.2018.11.01010.1016/j.imbio.2018.11.01030739804 Search in Google Scholar

4. T. V. Rohm, D. T. Meier, J. M. Olefsky and M. Y. Donath, Inflammation in obesity, diabetes, and related disorders, Immunity 55(1) (2022) 31–55; https://doi.org/10.1016/j.immuni.2021.12.013877345735021057 Search in Google Scholar

5. J. James, Dying well with diabetes, Ann. Palliat. Med. 8(2) (2019) 178–189; https://doi.org/10.21037/apm.2018.12.1030691282 Search in Google Scholar

6. E. Niccolai, S. Baldi, F. Ricci, E. Russo, G. Nannini, M. Menicatti, G. Poli, A. Taddei, G. Bartolucci, A. S. Calabro, F. C. Stingo and A. Amedei, Evaluation and comparison of short chain fatty acids composition in gut diseases, World J. Gastroenterol. 25(36) (2019) 5543–5558; https://doi.org/10.3748/wjg.v25.i36.5543676798331576099 Search in Google Scholar

7. P. Markowiak-Kopec and K. Slizewska, The effect of probiotics on the production of short-chain fatty acids by human intestinal microbiome, Nutrients 12(4) (2020) Article ID 1107; https://doi.org/10.3390/nu12041107723097332316181 Search in Google Scholar

8. J. Frampton, K. G. Murphy, G. Frost and E. S. Chambers, Short-chain fatty acids as potential regulators of skeletal muscle metabolism and function, Nat. Metab. 2 (2020) 840–848; https://doi.org/10.1038/s42255-020-0188-732694821 Search in Google Scholar

9. F. Wang, H. Wu, M. Fan, R. Yu, Y. Zhang, J. Liu, X. Zhou, Y. Cai, S. Huang, Z. Hu and X. Jin, Sodium butyrate inhibits migration and induces AMPK-mTOR pathway-dependent autophagy and ROS-mediated apoptosis via the miR-139-5p/Bmi-1 axis in human bladder cancer cells, FASEB J. 34(3) (2020) 4266–4282; https://doi.org/10.1096/fj.201902626R31957111 Search in Google Scholar

10. W. Ratajczak, A. Ryl, A. Mizerski, K. Walczakiewicz, O. Sipak and M. Laszczynska, Immunomodulatory potential of gut microbiome-derived short-chain fatty acids (SCFAs), Acta Biochim. Pol. 66(1) (2019) 1–12; https://doi.org/10.18388/abp.2018_264830831575 Search in Google Scholar

11. W. Xia, X. Dai, L. K. Ding, Y. Xi, M. Yan, C. X. Yi and H. X. Xu, Three main short-chain fatty acids inhibit the activation of THP-1 cells by Mycoplasma pneumoniae, Biosci. Biotechnol. Biochem. 85(4) (2021) 923–930; https://doi.org/10.1093/bbb/zbaa11033590852 Search in Google Scholar

12. M. Wang, L. Song, C. Strange, X. Dong and H. Wang, Therapeutic effects of adipose stem cells from diabetic mice for the treatment of type 2 diabetes, Mol. Ther. 26(8) (2018) 1921–1930; https://doi.org/10.1016/j.ymthe.2018.06.013609439130005867 Search in Google Scholar

13. W. Huang, Y. Man, C. Gao, L. Zhou, J. Gu, H. Xu, Q. Wan, Y. Long, L.Chai, Y. Xu and Y. Xu, Short-chain fatty acids ameliorate diabetic nephropathy via GPR43-mediated inhibition of oxidative stress and NF-κB signaling, Oxid. Med. Cell. Longev. 2020 (2020) Article ID 4074832 (21 pages); https://doi.org/10.1155/2020/4074832742206832831998 Search in Google Scholar

14. L. Yuan, Y. Zhu, S. Huang, L. Lin, X. Jiang and S. Chen, NF-kappaB/ROS and ERK pathways regulate NLRP3 inflammasome activation in Listeria monocytogenes infected BV2 microglia cells, J. Microbiol. 59 (2021) 771–781; https://doi.org/10.1007/s12275-021-0692-934061343 Search in Google Scholar

15. J. Zou, Y. Zhang, J. Sun, X. Wang, H. Tu, S. Geng, R. Liu, Y. Chen and Z. Bi, Deoxyelephantopin induces reactive oxygen species-mediated apoptosis and autophagy in human osteosarcoma cells, Cell. Physiol. Biochem. 42(5) (2017) 1812–1821; https://doi.org/10.1159/00047953728750364 Search in Google Scholar

16. X. Shen, X. Jiang, L. Qian, A. Zhang, F. Zuo and D. Zhang, Polyphenol extracts from germinated mung beans can improve Type 2 diabetes in mice by regulating intestinal microflora and inhibiting inflammation, Front. Nutr. 9 (2022) Article ID 846409 (13 pages); https://doi.org/10.3389/fnut.2022.846409898868135399678 Search in Google Scholar

17. X. Cui, D. W. Qian, S. Jiang, E. X. Shang, Z. H. Zhu and J. A. Duan, Scutellariae radix and Coptidis rhizoma improve glucose and lipid metabolism in T2DM rats via regulation of the metabolic profiling and MAPK/PI3K/Akt signaling pathway, Int. J. Mol. Sci. 19(11) (2018) Article ID 3634 (22 pages); https://doi.org/10.3390/ijms19113634627495030453687 Search in Google Scholar

18. S. Ding, S. Xu, Y. Ma, G. Liu, H. Jang and J. Fang, Modulatory mechanisms of the NLRP3 inflammasomes in diabetes, Biomolecules 9(12) (2019) Article ID 850 (15 pages); https://doi:10.3390/biom912085010.3390/biom9120850699552331835423 Search in Google Scholar

19. F. Yang, Y. Qin, Y. Wang, S. Meng, H. Xian, H. Che, J. Lv, Y. Li, Y. Yu, Y. Bai and L. Wang, Metformin inhibits the NLRP3 inflammasome via AMPK/mTOR-dependent effects in diabetic cardiomyopathy, Int. J. Biol. Sci. 15(5) (2019) 1010–1019; https://doi:10.7150/ijbs.2968010.7150/ijbs.29680653578131182921 Search in Google Scholar

20. X. Chen, D. Zhang, Y. Li, W. Wang, W. Bei and J. Guo, NLRP3 inflammasome and IL-1β pathway in type 2 diabetes and atherosclerosis: Friend or foe?, Pharmacol. Res. 173 (2021) Article ID 105885; https://doi:10.1016/j.phrs.2021.10588510.1016/j.phrs.2021.10588534536551 Search in Google Scholar

21. X. Wang, G. He, Y. Peng, W. Zhong, Y. Wang and B. Zhang, Sodium butyrate alleviates adipocyte inflammation by inhibiting NLRP3 pathway, Sci. Rep. 5 (2015) Article ID 12676 (10 pages); https://doi:10.1038/srep1267610.1038/srep12676452265426234821 Search in Google Scholar

22. C. D. Gonzalez, M. S. Lee, P. Marchetti, M. Pietropaolo, R. Towns, M. I. Vaccaro, H. Watada and J. W. Wiley, The emerging role of autophagy in the pathophysiology of diabetes mellitus, Autophagy 7(1) (2011) 2–11; https://doi.org/10.4161/auto.7.1.13044335948120935516 Search in Google Scholar

23. T. Tao and H. Xu, Autophagy and obesity and diabetes, Adv. Exp. Med. Biol. 1 (2020) 445–461; https://doi.org/10.1007/978-981-15-4272-5_3232671767 Search in Google Scholar

24. B. Cui, H. Lin, J. Yu, J. Yu and Z. Hu, Autophagy and the immune response, Adv. Exp. Med. Biol. 1206 (2019) 595–634; https://doi.org/10.1007/978-981-15-0602-4_27712036331777004 Search in Google Scholar

25. Y. Yuan, Y. Chen, T. Peng, L. Li, W. Zhu, F. Liu, S. Liu, X. An, R. Luo, J. Cheng, J. Lu, Mitochondrial ROS-induced lysosomal dysfunction impairs autophagic flux and contributes to M1 macrophage polarization in a diabetic condition, Clin. Sci. (Lond). 133(15) (2019) 1759–1777; https://doi.org/10.1042/CS2019067231383716 Search in Google Scholar

26. R. Wu, X. Liu, J. Yin, H. Wu, X. Cai, N. Wang, Y. Qian and F. Wang, IL-6 receptor blockade ameliorates diabetic nephropathy via inhibiting inflammasome in mice, Metabolism 83 (2018) 18–24; https://doi.org/10.1016/j.metabol.2018.01.00229336982 Search in Google Scholar

27. W. Ying, W. Fu, Y. S. Lee, J. M. Olefsky, The role of macrophages in obesity-associated islet inflammation and β-cell abnormalities, Nat. Rev. Endocrinol. 16(2) (2020) 81–90; https://doi:10.1038/s41574-019-0286-310.1038/s41574-019-0286-3831527331836875 Search in Google Scholar

eISSN:
1846-9558
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Pharmacy, other