1. bookVolume 72 (2022): Edizione 4 (December 2022)
Dettagli della rivista
License
Formato
Rivista
eISSN
1846-9558
Prima pubblicazione
28 Feb 2007
Frequenza di pubblicazione
4 volte all'anno
Lingue
Inglese
Open Access

In vitro effects of ascorbic acid on viability and metabolism of patients’ osteosarcoma stem cells

Pubblicato online: 18 Oct 2022
Volume & Edizione: Volume 72 (2022) - Edizione 4 (December 2022)
Pagine: 599 - 613
Accettato: 19 Jul 2022
Dettagli della rivista
License
Formato
Rivista
eISSN
1846-9558
Prima pubblicazione
28 Feb 2007
Frequenza di pubblicazione
4 volte all'anno
Lingue
Inglese

1. J. K. Anninga, H. Gelderblom, M. Fiocco, J. R. Kroep, A. H. Taminiau, P. C. Hogendoorn and R. M. Egeler, Chemotherapeutic adjuvant treatment for osteosarcoma: where do we stand?, Eur. J. Cancer 47(16) (2011) 2431–2445; https://doi.org/10.1016/j.ejca.2011.05.03010.1016/j.ejca.2011.05.03021703851 Search in Google Scholar

2. C. P. Gibbs, P. P. Levings and S. C. Ghivizzani, Evidence for the osteosarcoma stem cell, Current Orthopaedic Practice 22(4) (2011) 322–326; https://doi.org/10.1097/BCO.0b013e318221aee810.1097/BCO.0b013e318221aee8313251521755019 Search in Google Scholar

3. D. Nassar and C. Blanpain, Cancer stem cells: Basic concepts and therapeutic implications, Annu. Rev. Pathol. 23(11) (2016) 47–76; https://doi.org/10.1146/annurev-pathol-012615-04443810.1146/annurev-pathol-012615-04443827193450 Search in Google Scholar

4. M. Jang, S. S. Kim and J. Lee, Cancer cell metabolism: implications for therapeutic targets, Exp. Mol. Med. 45(10) (2013) Article ID 201385 (8 pages); https://doi.org/10.1038/emm.2013.8510.1038/emm.2013.85380936124091747 Search in Google Scholar

5. M. G. Vander Heiden, L. C. Cantley and C. B. Thompson, Understanding the Warburg effect: the metabolic requirements of cell proliferation, Science 324(5930) (2009) 1029–1033; https://doi.org/10.1126/science.116080910.1126/science.1160809284963719460998 Search in Google Scholar

6. H. Kondoh, M. E. Lleonart, D. Bernard and J. Gil, Protection from oxidative stress by enhanced glycolysis; a possible mechanism of cellular immortalization, Histol. Histopathol. 22(1) (2007) 85–90; https://doi.org/10.14670/HH-22.85 Search in Google Scholar

7. C. D. Folmes, T. J. Nelson, A. Martinez-Fernandez, D. K. Arrell, J. Z. Lindor, P. P. Dzeja, Y. Ikeda, C. Perez-Terzic and A. Terzic, Somatic oxidative bioenergetics transitions into pluripotency dependent glycolysis to facilitate nuclear reprogramming, Cell. Metab. 14(2) (2011) 264–271; https://doi.org/10.1016/j.cmet.2011.06.01110.1016/j.cmet.2011.06.011315613821803296 Search in Google Scholar

8. G. Farnie, F. Sotgia and M. P. Lisanti, High mitochondrial mass identifies a sub-population of stem-like cancer cells that are chemo-resistant, Oncotarget 6(31) (2015) 30472–30486; https://doi.org/10.18632/oncotarget.540110.18632/oncotarget.5401474154526421710 Search in Google Scholar

9. A. De Luca, M. Fiorillo, M. Peiris-Pagès, B. Ozsvari, D. L. Smith, R. Sanchez-Alvarez, U. E. Martinez-Outschoorn, A. R. Cappello, V. Pezzi, M. P. Lisanti and F. Sotgia, Mitochondrial biogenesis is required for the anchorage-independent survival and propagation of stem-like cancer cells, Oncotarget 6(17) (2015) 14777–14795; https://doi.org/10.18632/oncotarget.440110.18632/oncotarget.4401455811526087310 Search in Google Scholar

10. P. Sancho, D. Barneda and C. Heeschen, Hallmarks of cancer stem cell metabolism, Br. J. Cancer 114(12) (2016) 1305–1312; https://doi.org/10.1038/bjc.2016.15210.1038/bjc.2016.152498447427219018 Search in Google Scholar

11. V. Snyder, T. C. Reed-Newman, L. Arnold, S. M. Thomas and S. Anant, Cancer stem cell metabolism and potential therapeutic targets, Front. Oncol. 203(8) (2018) Article ID e203 (9 pages); https://doi.org/10.3389/fonc.2018.0020310.3389/fonc.2018.00203599605829922594 Search in Google Scholar

12. J. He, L. Xiong, Q. Li, L. Lin, X. Miao, S. Yan, Z. Hong, L. Yang, Y. Wen and X. Deng, 3D modeling of cancer stem cell niche, Oncotarget 9(1) (2017) 1326–1345; https://doi.org/10.18632/oncotarget.1984710.18632/oncotarget.19847578744229416698 Search in Google Scholar

13. S. Park, S. Ahn, Y. Shin, Y. Yang and C. H. Yeom, Vitamin C in cancer: A metabolomics perspective, Front. Physiol. 762(9) (2018) Article ID e762 (9 pages); https://doi.org/10.3389/fphys.2018.0076210.3389/fphys.2018.00762601839729971019 Search in Google Scholar

14. N. J. Satheesh, S. M. Samuel and D. Büsselberg, Combination therapy with vitamin C could eradicate cancer stem cells, Biomolecules 10(1) (2020) Article ID 1000079 (20 pages); https://doi.org/10.3390/biom1001007910.3390/biom10010079702245631947879 Search in Google Scholar

15. M. T. Valenti, M. Zanatta, L. Donatelli, G. Viviano, C. Cavallini, M. T. Scupoli and L. Dalle Carbonare, Ascorbic acid induces either differentiation or apoptosis in MG-63 osteosarcoma lineage, Anticancer Res. 34(4) (2014) 1617–1627. Search in Google Scholar

16. G. Fernandes, A. W. Barone and R. Dziak, The effect of ascorbic acid on bone cancer cells in vitro, Cogent Biol. 3(1) (2017) Article ID 1288335 (12 pages); https://doi.org/10.1080/23312025.2017.128833510.1080/23312025.2017.1288335 Search in Google Scholar

17. S. J. Lee, J. H. Jeong, I. H. Lee, J. Lee, J. H. Jung, H. Y. Park, D. H. Lee and Y. S. Chae, Effect of high-dose vitamin C combined with anti-cancer treatment on breast cancer cells, Anticancer Res. 39(2) (2019) 751–758; https://doi.org/10.21873/anticanres.1317210.21873/anticanres.1317230711954 Search in Google Scholar

18. J. Kaźmierczak-Barańska, K. Boguszewska, A. Adamus-Grabicka and B. T. Karwowski, Two faces of vitamin C – antioxidative and pro-oxidative agent, Nutrients 12(5) (2020) Article ID1201501 (19 pages); https://doi.org/10.3390/nu1205150110.3390/nu12051501728514732455696 Search in Google Scholar

19. K. F. Hung, T. Yang and S. Y. Kao, Cancer stem cell theory: Are we moving past the mist?, J. Chin. Med. Assoc. 82(11) (2019) 814–818; https://doi.org/10.1097/JCMA.000000000000018610.1097/JCMA.000000000000018631469690 Search in Google Scholar

20. Z. Zhong, S. Mao, H. Lin, H. Li, J. Lin and J. M. Lin, Alteration of intracellular metabolome in osteosarcoma stem cells revealed by liquid chromatography-tandem mass spectrometry, Talanta 204 (2019) 6–12; https://doi.org/10.1016/j.talanta.2019.05.08810.1016/j.talanta.2019.05.08831357340 Search in Google Scholar

21. E. Mizushima, T. Tsukahara, M. Emori, K. Murata, A. Akamatsu, Y. Shibayama, S. Hamada, Y. Watanabe, M. Kaya, Y. Hirohashi, T. Kanaseki, M. Nakatsugawa, T. Kubo, T. Yamashita, N. Sato and T. Torigoe, Osteosarcoma-initiating cells show high aerobic glycolysis and attenuation of oxidative phosphorylation mediated by LIN28B, Cancer science 111(1) (2020) 36–46; https://doi.org/10.1111/cas.1422910.1111/cas.14229694242931705593 Search in Google Scholar

22. G. Palmini, R. Zonefrati, C. Mavilia, A. Aldinucci, E. Luzi, F. Marini, A. Franchi, R. Capanna, A. Tanini and M. L. Brandi, Establishment of cancer stem cell cultures from human conventional osteosarcoma, J. Vis. Exp. 116 (2016) Article ID e53884 (17 pages); https://doi.org/10.3791/5388410.3791/53884509219727768062 Search in Google Scholar

23. S. H. Bae, H. Ryu, K. J. Rhee, J. E. Oh, S. K. Baik, K. Y. Shim, J. H. Kong, S. Y. Hyun, H. S. Pack, C. Im, H. C. Shin, Y.M. Kim, H. S. Kim, Y. W. Eom and J. I. Lee, L-ascorbic acid 2-phosphate and fibroblast growth factor-2 treatment maintains differentiation potential in bone marrow-derived mesenchymal stem cells through expression of hepatocyte growth factor, Growth Factors 33(2) (2015) 71–78; https://doi.org/10.3109/08977194.2015.101362810.3109/08977194.2015.101362825714612 Search in Google Scholar

Articoli consigliati da Trend MD

Pianifica la tua conferenza remota con Sciendo