1. bookVolume 72 (2022): Edizione 4 (December 2022)
Dettagli della rivista
License
Formato
Rivista
eISSN
1846-9558
Prima pubblicazione
28 Feb 2007
Frequenza di pubblicazione
4 volte all'anno
Lingue
Inglese
Open Access

Optimized D-α-tocopherol polyethylene glycol succinate/phospholipid self-assembled mixed micelles: A promising lipid-based nanoplatform for augmenting the antifungal activity of fluconazole

Pubblicato online: 18 Oct 2022
Volume & Edizione: Volume 72 (2022) - Edizione 4 (December 2022)
Pagine: 547 - 560
Accettato: 27 Dec 2021
Dettagli della rivista
License
Formato
Rivista
eISSN
1846-9558
Prima pubblicazione
28 Feb 2007
Frequenza di pubblicazione
4 volte all'anno
Lingue
Inglese

1. B. Healy and R. Barnes, Topical and oral treatments for fungal skin infections, Prescriber 17(7) (2006) 30–43; https://doi.org/10.1002/psb.36010.1002/psb.360 Search in Google Scholar

2. R. Coppola, S. Zanframundo, M. V. Rinati, M. Carbotti, A. Graziano, G. Galati, L. De Florio and V. Panasiti, Rhodotorula mucilaginosa skin infection in a patient treated with sorafenib, J. Eur. Acad. Dermatol. Venereol. 29(5) (2015) 1028–1029; https://doi.org/10.1111/jdv.1245510.1111/jdv.1245524628665 Search in Google Scholar

3. E. Palese, M. Nudo, G. Zino, V. Devirgiliis, M. Carbotti, E. Cinelli, D. M. Rodio, A. Bressan, C. Prezioso, C. Ambrosi, D. Scribano, V. Pietropaolo, D. Fioriti and V. Panasiti, Cutaneous candidiasis caused by Candida albicans in a young non-immunosuppressed patient: an unusual presentation, Int. J. Immunopathol. Pharmacol. 32 (2018) 1–4; https://doi.org/10.1177/205873841878136810.1177/2058738418781368639834229882446 Search in Google Scholar

4. S. Bhattacharya, S. Sae-Tia and B. C. Fries, Candidiasis and mechanisms of antifungal resistance, Antibiotics 9(6) (2020) Article ID 312 (19 pages); https://doi.org/10.3390/antibiotics906031210.3390/antibiotics9060312734565732526921 Search in Google Scholar

5. M. V. Martin, The use of fluconazole and itraconazole in the treatment of Candida albicans infections: a review, J. Antimicrob. Chemother. 44(4) (1999) 429–437; https://doi.org/10.1093/jac/44.4.42910.1093/jac/44.4.42910588302 Search in Google Scholar

6. P. Suchil, F. Montero Gei, M. Robles, A. Perera-Ramirez, O. Welsh and O. Male, Once-weekly oral doses of fluconazole 150 mg in the treatment of tinea corporis/cruris and cutaneous candidiasis, Clin. Exp. Dermatol. 17(6) (1992) 397–401; https://doi.org/10.1111/j.1365-2230.1992.tb00246.x10.1111/j.1365-2230.1992.tb00246.x1486705 Search in Google Scholar

7. B. Darwesh, H. M. Aldawsari and S. M. Badr-Eldin, Optimized chitosan/anion polyelectrolyte complex based inserts for vaginal delivery of fluconazole: In vitro/in vivo evaluation, Pharmaceutics 10(4) (2018) Article ID 227 (16 pages); https://doi.org/10.3390/pharmaceutics1004022710.3390/pharmaceutics10040227632147230424501 Search in Google Scholar

8. H. M. Ellaithy and K. M. F. El-Shaboury, The development of Cutina lipogels and gel microemulsion for topical administration of fluconazole, AAPS PharmSciTech 3 (2002) 77–85; https://doi.org/10.1208/pt03043510.1208/pt030435275134412916929 Search in Google Scholar

9. M. Gupta, S. Tiwari and S. P. Vyas, Influence of various lipid core on characteristics of SLNs designed for topical delivery of fluconazole against cutaneous candidiasis, Pharm. Dev. Technol. 18(3) (2013) 550–559; https://doi.org/10.3109/10837450.2011.59816110.3109/10837450.2011.59816121810069 Search in Google Scholar

10. V. Prajapati, A. Jain, R. Jain, S. Sahu and D. V. Kohli, Treatment of cutaneous candidiasis through fluconazole encapsulated cubosomes, Drug Deliv. Transl. Res. 4 (2014) 400–408; https://doi.org/10.1007/s13346-014-0202-210.1007/s13346-014-0202-225787202 Search in Google Scholar

11. T. O. McDonald, M. Siccardi, D. Moss, N. Liptrott, M. Giardiello, S. Rannard and A. Owen, The Application of Nanotechnology to Drug Delivery in Medicine, in Nanoengineering Global Approaches to Health and Safety Issues, Elsevier 2015, pp. 173–223.10.1016/B978-0-444-62747-6.00007-5 Search in Google Scholar

12. W. Weng, Q. Wang, C. Wei, M. Adu-Frimpong, E. Toreniyazov, H. Ji, J. Yu and X. Xu, Mixed micelles for enhanced oral bioavailability and hypolipidemic effect of liquiritin: preparation, in vitro and in vivo evaluation, Drug Dev. Ind. Pharm. 47(2) (2021) 308–318; https://doi.org/10.1080/03639045.2021.187983910.1080/03639045.2021.187983933494627 Search in Google Scholar

13. O. A. A. Ahmed, K. M. El-Say, B. M. Aljaeid, S. M. Badr-Eldin and T. A. Ahmed, Optimized vinpocetine-loaded vitamin E D-α-tocopherol polyethylene glycol 1000 succinate-alpha lipoic acid micelles as a potential transdermal drug delivery system: in vitro and ex vivo studies, Int. J. Nanomedicine 2018(14) 33–43; https://doi.org/10.2147/IJN.S18747010.2147/IJN.S187470630282730587983 Search in Google Scholar

14. O. A. A. Ahmed and S. M. Badr-Eldin, In situ misemgel as a multifunctional dual-absorption platform for nasal delivery of raloxifene hydrochloride: formulation, characterization, and in vivo performance, Int. J. Nanomedicine 2018(13) 6325–6335; https://doi.org/10.2147/IJN.S18158710.2147/IJN.S181587618806830349253 Search in Google Scholar

15. J. Sobczyński and B. Chudzik-Rząd, Mixed Micelles as Drug Delivery Nanocarriers, in Design and Develop ment of New Nanocarriers, Elsevier 2018, pp. 331–364.10.1016/B978-0-12-813627-0.00009-0 Search in Google Scholar

16. L. C. Chen, Y. C. Chen, C. Y. Su, W. P. Wong, M. T. Sheu and H. O. Ho, Development and Characterization of lecithin-based self-assembling mixed polymeric micellar (saMPMs) drug delivery systems for curcumin, Sci. Rep. 6 (2016) Article ID 37122 (11 pages); https://doi.org/10.1038/srep3712210.1038/srep37122511106427848996 Search in Google Scholar

17. L. Mu and S. S. Feng, PLGA/TPGS nanoparticles for controlled release of paclitaxel: effects of the emulsifier and drug loading ratio, Pharm. Res. 20 (2003) 1864–1872; https://doi.org/10.1023/B:PHAM.0000003387.15428.4210.1023/B:PHAM.0000003387.15428.42 Search in Google Scholar

18. J. Song, H. Huang, Z. Xia, Y. Wei, N. Yao, L. Zhang, H. Yan, X. Jia and Z. Zhang, TPGS/phospholipids mixed micelles for delivery of icariside II to multidrug-resistant breast cancer, Integr. Cancer Ther. 15(3) (2016) 390–399; https://doi.org/10.1177/153473541559657110.1177/1534735415596571573917626293804 Search in Google Scholar

19. M. L. Manca, C. Cencetti, P. Matricardi, I. Castangia, M. Zaru, O. D. Sales, A. Nacher, D. Valenti, A. M. Maccioni, A. M. Fadda and M. Manconi, Glycerosomes: Use of hydrogenated soy phosphatidylcholine mixture and its effect on vesicle features and diclofenac skin penetration, Int. J. Pharm. 511(1) (2016) 198–204; https://doi.org/10.1016/j.ijpharm.2016.07.00910.1016/j.ijpharm.2016.07.00927418567 Search in Google Scholar

20. M. J. Naguib, S. Salah, S. A. Abdel Halim and S. M. Badr-Eldin, Investigating the potential of utilizing glycerosomes as a novel vesicular platform for enhancing intranasal delivery of lacidipine, Int. J. Pharm. 582 (2020) Article ID 119302 (14 pages); https://doi.org/10.1016/j.ijpharm.2020.11930210.1016/j.ijpharm.2020.11930232276091 Search in Google Scholar

21. R. Shen, J. Kim, M. Yao and T. A. Elbayoumi, Development and evaluation of vitamin E D-α-tocopheryl polyethylene glycol 1000 succinate-mixed polymeric phospholipid micelles of berberine as an anticancer nanopharmaceutical, Int. J. Nanomedicine 2016(11) 1687–1700; https://doi.org/10.2147/IJN.S10333210.2147/IJN.S103332 Search in Google Scholar

22. N. A. Alhakamy, O. A. Ahmed, U. A. Fahmy, H. Z. Asfour, A. F. Alghaith, W. A. Mahdi, S. Alshehri and S. Md, Development, Optimization and evaluation of 2-methoxy-estradiol loaded nanocarrier for prostate cancer, Front. Pharmacol. 12 (2021) Article ID 682337 (14 pages); https://doi.org/10.3389/FPHAR.2021.68233710.3389/fphar.2021.682337 Search in Google Scholar

23. W. H. Abd-Elsalam, S. A. El-Zahaby and A. M. Al-Mahallawi, Formulation and in vivo assessment of terconazole-loaded polymeric mixed micelles enriched with Cremophor EL as dual functioning mediator for augmenting physical stability and skin delivery, Drug Deliv. 25(1) (2018) 484–492; https://doi.org/10.1080/10717544.2018.143609810.1080/10717544.2018.1436098 Search in Google Scholar

24. P. Sadasivudu, N. Shastri and M. Sadanandam, Development and validation of RP-HPLC and UV methods of analysis for fluconazole in pharmaceutical solid dosage forms, Int. J. ChemTech Res. 1(4) (2009) 1131–1136. Search in Google Scholar

25. S. El-Housiny, M. A. S. Eldeen, Y. A. El-Attar, H. A. Salem, D. Attia, E. R. Bendas and M. A. El-Nabarawi, Fluconazole-loaded solid lipid nanoparticles topical gel for treatment of pityriasis versicolor: formulation and clinical study, Drug Deliv. 25(1) (2018) 78–90; https://doi.org/10.1080/10717544.2017.141344410.1080/10717544.2017.1413444 Search in Google Scholar

26. I. Angulo, M. B. Jiménez-Díaz, J. F. García-Bustos, D. Gargallo, F. Gómez de las Heras, M. A. Muñoz-Fernández and M. Fresno, Candida albicans infection enhances immunosuppression induced by cyclophosphamide by selective priming of suppressive myeloid progenitors for NO production, Cell. Immunol. 218(1–2) (2002) 46–58; https://doi.org/10.1016/S0008-8749(02)00521-X10.1016/S0008-8749(02)00521-X Search in Google Scholar

27. K. Maebashi, T. Itoyama, K. Uchida, N. Suegara and H. Yamaguchi, A novel model of cutaneous candidiasis produced in prednisolone-treated guinea-pigs, J. Med. Vet. Mycol. 32(5) (1994) 349–359; https://doi.org/10.1080/0268121948000047110.1080/026812194800004717844701 Search in Google Scholar

28. S. M. Badr-Eldin, N. A. Alhakamy, U. A. Fahmy, O. A. A. Ahmed, H. Z. Asfour, A. A. Althagafi, H. M. Aldawsari, W. Y. Rizg, W. A. Mahdi, A. F. Alghaith, S. Alshehri, F. Caraci and G. Caruso, Cytotoxic and pro-apoptotic effects of a sub-toxic concentration of fluvastatin on OVCAR3 ovarian cancer cells after its optimized formulation to melittin nano-conjugates, Front. Pharmacol. 11 (2021) Article ID 642171 (12 pages); https://doi.org/10.3389/fphar.2020.64217110.3389/fphar.2020.642171790193533633571 Search in Google Scholar

29. U. A. Fahmy, S. M. Badr-Eldin, O. A. A. Ahmed, H. M. Aldawsari, S. Tima, H. Z. Asfour, M. W. Al-Rabia, A. A. Negm, M. H. Sultan, O. A. A. Madkhali and N. A. Alhakamy, Intranasal niosomal in situ gel as a promising approach for enhancing flibanserin bioavailability and brain delivery: In vitro optimization and ex vivo/in vivo evaluation, Pharmaceutics 12(6) (2020) Article ID 485 (23 pages); https://doi.org/10.3390/pharmaceutics1206048510.3390/pharmaceutics12060485735623232471119 Search in Google Scholar

30. Z. M. Adib, S. Ghanbarzadeh, M. Kouhsoltani, A. Y. Khosroshahi and H. Hamishehkar, The effect of particle size on the deposition of solid lipid nanoparticles in different skin layers: A histological study, Adv. Pharm. Bull. 6(1) (2016) 31–36; https://doi.org/10.15171/apb.2016.006 Search in Google Scholar

31. R. Sharma, S. Kamboj, G. Singh and V. Rana, Development of aprepitant loaded orally disintegrating films for enhanced pharmacokinetic performance, Eur. J. Pharm. Sci. 84 (2016) 55–69; https://doi.org/10.1016/j.ejps.2016.01.00610.1016/j.ejps.2016.01.00626780381 Search in Google Scholar

32. J. Singh, P. Mittal, G. Vasant Bonde, G. Ajmal and B. Mishra, Design, optimization, characterization and in-vivo evaluation of Quercetin enveloped Soluplus®/P407 micelles in diabetes treatment, Artif. Cells Nanomedicine Biotechnol. 46(sup3) (2018) S546–S555; https://doi.org/10.1080/21691401.2018.150137910.1080/21691401.2018.150137930322273 Search in Google Scholar

33. A. E. S. F. Abou El Ela and M. M. El Khatib, Formulation and evaluation of new long acting metoprolol tartrate ophthalmic gels, Saudi Pharm. J. 22(6) (2014) 555–563; https://doi.org/10.1016/j.jsps.2014.03.00310.1016/j.jsps.2014.03.003428159625561869 Search in Google Scholar

34. A. A. Alhowyan, M. A. Altamimi, M. A. Kalam, A. A. Khan, M. Badran, Z. Binkhathlan, M. Alkholief and A. Alshamsan, Antifungal efficacy of Itraconazole loaded PLGA-nanoparticles stabilized by vitamin-E TPGS: In vitro and ex vivo studies, J. Microbiol. Methods 161 (2019) 87–95; https://doi.org/10.1016/j.mimet.2019.01.02010.1016/j.mimet.2019.01.02030738109 Search in Google Scholar

35. L. Qiu, B. Hu, H. Chen, S. Li, Y. Hu, Y. Zheng and X. Wu, Antifungal efficacy of itraconazole-loaded TPGS-b-(PCL-ran-PGA) nanoparticles, Int. J. Nanomedicine 2015(10) 1415–1423; https://doi.org/10.2147/IJN.S7161610.2147/IJN.S71616433750425733833 Search in Google Scholar

Articoli consigliati da Trend MD

Pianifica la tua conferenza remota con Sciendo