1. bookVolume 71 (2021): Edizione 2 (June 2021)
Dettagli della rivista
Prima pubblicazione
28 Feb 2007
Frequenza di pubblicazione
4 volte all'anno
Accesso libero

Polyethylene oxide matrix tablet swelling evolution: The impact of molecular mass and tablet composition

Pubblicato online: 04 Nov 2020
Volume & Edizione: Volume 71 (2021) - Edizione 2 (June 2021)
Pagine: 215 - 243
Accettato: 06 Jun 2020
Dettagli della rivista
Prima pubblicazione
28 Feb 2007
Frequenza di pubblicazione
4 volte all'anno

1. C. J. Kim, Drug release from compressed hydrophilic POLYOX-WSR tablets, J. Pharm. Sci.84 (1995) 303–306; https://doi.org/10.1002/jps.260084030810.1002/jps.2600840308Search in Google Scholar

2. L. Maggi, R. Bruni and U. Conte, High molecular weight polyethylene oxides (PEOs) as an alternative to HPMC in controlled release dosage forms, Int. J. Pharm.195 (2000) 229–238; https://doi.org/10.1016/S0378-5173(99)00402-010.1016/S0378-5173(99)00402-0Search in Google Scholar

3. A. Apicella, B. Cappello, M. A. Del Nobile, M. I. La Rotonda, G. Mensitieri and L. Nicolais, Poly (ethylene oxide) (PEO) and different molecular weight PEO blends monolithic devices for drug release, Biomaterials14 (1993) 83–90; https://doi.org/10.1016/0142-9612(93)90215-N10.1016/0142-9612(93)90215-NSearch in Google Scholar

4. P. Draksler, D. Lamešić and B. Janković, Physical properties of polymers used in pharmacy – Do we really know them?, Farm. Vestn.67 (2016) 265–272.Search in Google Scholar

5. B. Hammouda, D. L. Ho and S. Kline, Insight into clustering in poly(ethylene oxide) solutions, Macromolecules37 (2004) 6932–6937; https://doi.org/10.1021/ma049623d10.1021/ma049623dSearch in Google Scholar

6. D. L. Ho, B. Hammouda and S. R. Kline, Clustering of poly(ethylene oxide) in water revisited, J. Polymer Sci. Part B: Polymer Physics41 (2002) 135–138; https://doi.org/10.1002/polb.1034010.1002/polb.10340Search in Google Scholar

7. D. Rivero, L. M. Gouveia, A. J. Müller and A. E. Sáez, Shear-thickening behavior of high molecular weight poly(ethylene oxide) solutions, Rheol. Acta.51 (2011) 13–20; https://doi.org/10.1007/s00397-011-0569-710.1007/s00397-011-0569-7Search in Google Scholar

8. A. S. Hoffman, The origins and evolution of “controlled” drug delivery systems, J. Control. Release132 (2008) 153–163; https://doi.org/10.1016/j.jconrel.2008.08.01210.1016/j.jconrel.2008.08.012Search in Google Scholar

9. Q. T. Nguyen, E. Favre, Z. H. Ping and J. Néel, Clustering of solvents in membranes and its influence on membrane transport properties, J. Memb. Sci.113 (1996) 137–150; https://doi.org/10.1016/0376-7388(95)00219-710.1016/0376-7388(95)00219-7Search in Google Scholar

10. J. H. Park and Y. H. Bae, Hydrogels based on poly(ethylene oxide) and poly(tetramethylene oxide) or poly(dimethyl siloxane). II. Physical properties and bacterial adhesion, J. Appl. Polym. Sci. 89 (2003) 1505–1514; https://doi.org/10.1002/app.1221710.1002/app.12217Search in Google Scholar

11. S. K. Mallapragada and N. A. Peppas, Crystal dissolution-controlled release systems: I. Physical characteristics and modeling analysis, J. Control. Release45 (1997) 87–94; https://doi.org/10.1016/S0168-3659(96)01549-010.1016/S0168-3659(96)01549-0Search in Google Scholar

12. S. K. Mallapragada, N. A. Peppas and P. Colombo, Crystal dissolution-controlled release systems. II. Metronidazole release from semicrystalline poly(vinyl alcohol) systems, J. Biomed. Mater. Res.36 (1997) 125–130; https://doi.org/10.1002/(SICI)1097-4636(199707)36:1%3C125::AID-JBM15 %3E3.0.CO;2-HSearch in Google Scholar

13. B. Hammouda, Solvation characteristics of a model water-soluble polymer, J. Polym. Sci. Part B Polym. Phys.44 (2006) 3195–3199; https://doi.org/10.1002/polb.2096710.1002/polb.20967Search in Google Scholar

14. D. Cohn and A. Hotovely-Salomon, Biodegradable multiblock PEO/PLA thermoplastic elastomers: molecular design and properties, Polymer46 (2005) 2068–2075; https://doi.org/10.1016/j.polymer.2005.01.01210.1016/j.polymer.2005.01.012Search in Google Scholar

15. H. W. Starkweather Jr., Clustering of water in polymers, J. Polym. Sci. Part B Polym. Lett.1 (1963) 133–138; https://doi.org/10.1002/pol.1963.11001030510.1002/pol.1963.110010305Search in Google Scholar

16. I. Caraballo, Factors affecting drug release from hydroxypropyl methylcellulose matrix systems in the light of classical and percolation theories, Expert Opin. Drug Deliv.7 (2010) 1291–1301; https://doi.org/10.1517/17425247.2010.52819910.1517/17425247.2010.52819920977292Search in Google Scholar

17. J. D. Bonny and H. Leuenberger, Matrix type controlled release systems: I. Effect of percolation on drug dissolution kinetics, Pharm. Acta Helv.66 (1991) 160–164.Search in Google Scholar

18. A. Aharony and D. Stauffer, Introduction to Percolation Theory, Revised ed, Taylor & Francis, London, 2003.Search in Google Scholar

19. T. Gonçalves-Araújo, A. R. Rajabi-Siahboomi and I. Caraballo, Application of percolation theory in the study of an extended release verapamil hydrochloride formulation, Int. J. Pharm.361 (2008) 112–117; https://doi.org/10.1016/j.ijpharm.2008.05.02210.1016/j.ijpharm.2008.05.02218621491Search in Google Scholar

20. I. Fuertes, A. Miranda, M. Millán and I. Caraballo, Estimation of the percolation thresholds in acyclovir hydrophilic matrix tablets, Eur. J. Pharm. Biopharm.64 (2006) 336–342; https://doi.org/10.1016/j.ejpb.2006.05.00910.1016/j.ejpb.2006.05.00916876392Search in Google Scholar

21. S. Baumgartner, G. Lahajnar, A. Sepe and J. Kristl, Quantitative evaluation of polymer concentration profile during swelling of hydrophilic matrix tablets using 1H {NMR} and {MRI} methods, Eur. J. Pharm. Biopharm.59 (2005) 299–306; http://doi.org/10.1016/j.ejpb.2004.08.01010.1016/j.ejpb.2004.08.01015661502Search in Google Scholar

22. Y. Y. Chen, L. P. Hughes, L. F. Gladden and M. D. Mantle, Quantitative ultra-fast MRI of HPMC swelling and dissolution, J. Pharm. Sci.99 (2010) 3462–3472; https://doi.org/10.1002/jps.2211010.1002/jps.2211020229597Search in Google Scholar

23. P. P. Dorożyński, P. Kulinowski, A. Młynarczyk and G. J. Stanisz, MRI as a tool for evaluation of oral controlled release dosage forms, Drug Discov. Today17 (2012) 110–123; https://doi.org/10.1016/j.drudis.2011.10.02610.1016/j.drudis.2011.10.02622094243Search in Google Scholar

24. U. Mikac, J. Kristl and S. Baumgartner, Using quantitative magnetic resonance methods to understand better the gel-layer formation on polymer-matrix tablets, Expert Opin. Drug Deliv.8 (2011) 677–692; https://doi.org/10.1517/17425247.2011.56655410.1517/17425247.2011.56655421501097Search in Google Scholar

25. A. Hu, C. Chen, M. D. Mantle, B. Wolf, L. F. Gladden, A. Rajabi-Siahboomi, S. Missaghi, L. Mason and C. D. Melia, The properties of HPMC:PEO extended release hydrophilic matrices and their response to ionic environments, Pharm. Res. 34 (2017) 941–956; https://doi.org/10.1007/s11095-016-2031-010.1007/s11095-016-2031-0Search in Google Scholar

26. T. M. Hyde and L. F. Gladden, Simultaneous measurement of water and polymer concentration profiles during swelling of poly(ethylene oxide) using magnetic resonance imaging, Polymer39 (1998) 811–819; http://doi.org/10.1016/S0032-3861(97)00328-510.1016/S0032-3861(97)00328-5Search in Google Scholar

27. T. Tajiri, S. Morita, R. Sakamoto, M. Suzuki, S. Yamanashi, Y. Ozaki and S. Kitamura, Release mechanisms of acetaminophen from polyethylene oxide/polyethylene glycol matrix tablets utilizing magnetic resonance imaging, Int. J. Pharm.395 (2010) 147–153; https://doi.org/10.1016/j.ijpharm.2010.05.02110.1016/j.ijpharm.2010.05.021Search in Google Scholar

28. S. Abrahmsén-Alami, A. Körner, I. Nilsson and A. Larsson, New release cell for {NMR} microim-aging of tablets: swelling and erosion of poly(ethylene oxide), J. Pharm. Biomed. Anal. 342 (2007) 105–114; http://doi.org/10.1016/j.ijpharm.2007.05.00510.1016/j.ijpharm.2007.05.005Search in Google Scholar

29. Q. Zhang, L. Gladden, P. Avalle and M. Mantle, In vitro quantitative 1H and 19F nuclear magnetic resonance spectroscopy and imaging studies of fluvastatinTM in Lescol® XL tablets in a USP-IV dissolution cell, J. Control. Release156 (2011) 345–354; https://doi.org/10.1016/j.jconrel.2011.08.03910.1016/j.jconrel.2011.08.039Search in Google Scholar

30. C. Dahlberg, S. V. Dvinskikh, M. Schuleit and I. Furó, Polymer swelling, drug mobilization and drug recrystallization in hydrating solid dispersion tablets studied by multinuclear NMR micro-imaging and spectroscopy, Mol. Pharm. 8 (2011) 1247–1256; https://doi.org/10.1021/mp200051e10.1021/mp200051eSearch in Google Scholar

31. C. A. Fyfe and A. I. Blazek, Investigation of hydrogel formation from hydroxypropylmethyl-cellulose (HPMC) by NMR spectroscopy and NMR imaging techniques, Macromolecules30 (1997) 6230–6237; https://doi.org/10.1021/ma970076o10.1021/ma970076oSearch in Google Scholar

32. C. A. Fyfe, H. Grondey, A. I. Blazek-Welsh, S. K. Chopra and B. J. Fahie, {NMR} imaging investigations of drug delivery devices using a flow-through {USP} dissolution apparatus, J. Control. Release68 (2000) 73–83; http://doi.org/10.1016/S0168-3659(00)00237-610.1016/S0168-3659(00)00237-6Search in Google Scholar

33. L. Maggi, L. Segale, M. L. Torre, E. Ochoa Machiste and U. Conte, Dissolution behaviour of hydro-philic matrix tablets containing two different polyethylene oxides (PEOs) for the controlled release of a water-soluble drug. Dimensionality study, Biomaterials23 (2002) 1113–1119; https://doi.org/10.1016/S0142-9612(01)00223-X10.1016/S0142-9612(01)00223-XSearch in Google Scholar

34. H. D. Bale and P. W. Schmidt, Small-angle X-ray-scattering investigation of submicroscopic porosity with fractal properties, Phys. Rev. Lett.53 (1984) 596–599; https://doi.org/10.1103/PhysRev-Lett.53.596Search in Google Scholar

35. S. Baumgartner, G. Lahajnar, A. Sepe and J. Kristl, Investigation of the state and dynamics of water in hydrogels of cellulose ethers by1H NMR spectroscopy, AAPS PharmSciTech3 (2002) 86; https://doi.org/10.1208/pt03043610.1208/pt030436275134512916930Search in Google Scholar

36. B. Narasimhan and N. A. Peppas, Molecular analysis of drug delivery systems controlled by dissolution of the polymer carrier, J. Pharm. Sci.86 (1997) 297–304; https://doi.org/10.1021/js960372z10.1021/js960372zSearch in Google Scholar

37. N. A. Peppas and J. J. Sahlin, A simple equation for the description of solute release. III. Coupling of diffusion and relaxation, Int. J. Pharm.57 (1989) 169–172; https://doi.org/10.1016/0378-5173(89)90306-210.1016/0378-5173(89)90306-2Search in Google Scholar

38. T. Higuchi, Mechanism of sustained-action medication. Theoretical analysis of rate of release of solid drugs dispersed in solid matrices, J. Pharm. Sci.52 (1963) 1145–1149; https://doi.org/10.1002/jps.260052121010.1002/jps.2600521210Search in Google Scholar

39. R. W. Korsmeyer, R. Gurny, E. Doelker, P. Buri and N. A. Peppas, Mechanisms of solute release from porous hydrophilic polymers, Int. J. Pharm.15 (1983) 25–35; https://doi.org/10.1016/0378-5173(83)90064-910.1016/0378-5173(83)90064-9Search in Google Scholar

40. A. Körner, A. Larsson, A. Andersson and L. Piculell, Swelling and polymer erosion for poly(ethylene oxide) tablets of different molecular weights polydispersities, J. Pharm. Sci.99 (2010) 1225–1238; https://doi.org/10.1002/jps.2189210.1002/jps.2189219718760Search in Google Scholar

41. M. Efentakis and M. Vlachou, Evaluation of high molecular weight poly(oxyethylene) (Polyox) polymer: studies of flow properties and release rates of furosemide and captopril from controlled-release hard gelatin capsules, Pharm. Dev. Technol.5 (2000) 339–46; https://doi.org/10.1081/PDT-10010054910.1081/PDT-100100549Search in Google Scholar

42. H. Li, R. J. Hardy and X. Gu, Effect of drug solubility on polymer hydration and drug dissolution from polyethylene oxide (PEO) matrix tablets, AAPS PharmSciTech9 (2008) 437–443; https://doi.org/10.1208/s12249-008-9060-x10.1208/s12249-008-9060-x297692418431663Search in Google Scholar

43. L. Wang, K. Chen, H. Wen, D. Ouyang, X. Li, Y. Gao, W. Pan and X. Yang, Design and evaluation of hydrophilic matrix system containing polyethylene oxides for the zero-order controlled delivery of water-insoluble drugs, AAPS PharmSciTech18 (2017) 82–92; https://doi.org/10.1208/s12249-016-0498-y10.1208/s12249-016-0498-y26883263Search in Google Scholar

44. C.-J. Kim, Effects of drug solubility, drug loading, and polymer molecular weight on drug release from Polyox tablets, Drug Dev. Ind. Pharm. 24 (1998) 645–651; https://doi.org/10.3109/0363904980908236610.3109/036390498090823669876509Search in Google Scholar

45. D. H. Choi, J. Y. Lim, S. Shin, W. J. Choi, S. H. Jeong and S. Lee, A novel experimental design method to optimize hydrophilic matrix formulations with drug release profiles and mechanical properties, J. Pharm. Sci.103 (2014) 3083–3094; https://doi.org/10.1002/jps.2408010.1002/jps.2408025055971Search in Google Scholar

46. J. S. Park, J. Y. Shim, K. V. T. Nguyen, J. S. Park, S. Shin, Y. W. Choi, J. Lee, J.-H. Yoon and S. H. Jeong, A pharma-robust design method to investigate the effect of PEG and PEO on matrix tablets, Int. J. Pharm.393 (2010) 79–87; https://doi.org/10.1016/j.ijpharm.2010.04.00910.1016/j.ijpharm.2010.04.009Search in Google Scholar

47. P. Draksler, B. Janković, Z. Abramović, Z. Lavrič and A. Meden, Assessment of critical material attributes of polyethylene oxide for formulation of prolonged-release tablets, Drug Dev. Ind. Pharm.45 (2019) 1949–1958; https://doi.org/10.1080/03639045.2019.168999110.1080/03639045.2019.1689991Search in Google Scholar

48. A. P. Cruz, C. D. Bertol, H. K. Stulzer, F. S. Murakami, F. T. Costella, H. V. A. Rocha and M. A. S. Silva, Swelling, erosion, and release behavior of PEO/primaquine matrix tablets, Pharm. Chem. J. 42 (2008) 413–418; https://doi.org/10.1007/s11094-008-0137-310.1007/s11094-008-0137-3Search in Google Scholar

49. H. Kojima, K. Yoshihara, T. Sawada, H. Kondo and K. Sako, Extended release of a large amount of highly water-soluble diltiazem hydrochloride by utilizing counter polymer in polyethylene oxides (PEO)/polyethylene glycol (PEG) matrix tablets, Eur. J. Pharm. Biopharm. 70 (2008) 556–562; https://doi.org/10.1016/j.ejpb.2008.05.03210.1016/j.ejpb.2008.05.032Search in Google Scholar

50. Colorcon, Physico-mechanical characterization of POLYOX for tablet manufacture, 2009.Search in Google Scholar

51. T. D. Reynolds, S. A. Mitchell and K. M. Balwinski, Investigation of the effect of tablet surface area/volume on drug release from hydroxypropylmethylcellulose controlled-release matrix tablets, Drug Dev. Ind. Pharm. 28 (2002) 457–466; https://doi.org/10.1081/DDC-12000300710.1081/DDC-120003007Search in Google Scholar

52. S.-U. Choi, J. Lee and Y. W. Choi, Development of a directly compressible poly(ethylene oxide) matrix for the sustained-release of dihydrocodeine bitartrate, Drug Dev. Ind. Pharm.29 (2003) 1045–1052; https://doi.org/10.1081/DDC-12002586310.1081/DDC-120025863Search in Google Scholar

53. Colorcon, Formulation of Polyox ER matrices for a highly soluble active, 2009.Search in Google Scholar

54. Q. Zhang, Investigating polymer conformation in poly (ethylene oxide) (PEO) based systems for pharmaceutical applications a Raman spectroscopic study of the hydration process, Department of Applied Physics, Condensed Matter Physics, Chalmers University of Technology, 2011.Search in Google Scholar

55. A. Rangriz Shokri, T. Babadagli and A. Jafari, A critical analysis of the relationship between statistical- and fractal-fracture-network characteristics and effective fracture-network permeability, SPE Reserv. Eval. Eng.19 (2016) 494–510; https://doi.org/10.2118/181743-PA10.2118/181743-PASearch in Google Scholar

56. E.-Q. Chen, S.-W. Lee, A. Zhang, B.-S. Moon, P. S. Honigfort, I. Mann, H.-M. Lin, F. W. Harris, S. Z. D. Cheng, B. S. Hsiao and F. Yeh, Isothermal thickening and thinning processes in low molecular weight poly(ethylene oxide) fractions crystallized from the melt: 6. Configurational defects in molecules, Polymer40 (1999) 4543–4551; https://doi.org/10.1016/S0032-3861(99)00069-510.1016/S0032-3861(99)00069-5Search in Google Scholar

57. The Dow Chemical Company, What is the glass transition temperature of POLYOXTM water-soluble resins?, Dow Answ. Cent.; https://dowservice.custhelp.com/app/answers/detail/a_id/17872 (accessed October 24, 2019).Search in Google Scholar

58. S. Sant, V. Nadeau and P. Hildgen, Effect of porosity on the release kinetics of propafenone-loaded PEG-g-PLA nanoparticles, J. Control. Release107 (2005) 203–214; https://doi.org/10.1016/j.jconrel.2005.02.01710.1016/j.jconrel.2005.02.01716099525Search in Google Scholar

59. J. Ma, J. Sun, L. Fan, S. Bai, H. Panezai and Y. Jiao, Fractal evolution of dual pH- and temperature-responsive P(NIPAM-co-AA)@BMMs with bimodal mesoporous silica core and coated-copolymer shell during drug delivery procedure via SAXS characterization, Arab. J. Chem. 13 (2020) 4147–4161; https://doi.org/10.1016/j.arabjc.2019.06.01210.1016/j.arabjc.2019.06.012Search in Google Scholar

Articoli consigliati da Trend MD

Pianifica la tua conferenza remota con Sciendo